
Chapter One

Linear Systems

I Solving Linear Systems

Systems of linear equations are common in science and mathematics. These two
examples from high school science [Onan] give a sense of how they arise.

The first example is from Statics. Suppose that we have three objects, we
know that one has a mass of 2 kg, and we want to find the two unknown masses.
Suppose further that experimentation with a meter stick produces these two
balances.
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For the masses to balance we must have that the sum of moments on the left
equals the sum of moments on the right, where the moment of an object is its
mass times its distance from the balance point. That gives a system of two
linear equations.

40h+ 15c = 100

25c = 50+ 50h

The second example is from Chemistry. We can mix, under controlled
conditions, toluene C7H8 and nitric acid HNO3 to produce trinitrotoluene
C7H5O6N3 along with the byproduct water (conditions have to be very well
controlled— trinitrotoluene is better known as TNT). In what proportion should
we mix them? The number of atoms of each element present before the reaction

xC7H8 + yHNO3 −→ zC7H5O6N3 + wH2O
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must equal the number present afterward. Applying that in turn to the elements
C, H, N, and O gives this system.

7x = 7z

8x+ 1y = 5z+ 2w

1y = 3z

3y = 6z+ 1w

Both examples come down to solving a system of equations. In each system,
the equations involve only the first power of each variable. This chapter shows
how to solve any such system.

I.1 Gauss’s Method

1.1 Definition A linear combination of x1, . . . , xn has the form

a1x1 + a2x2 + a3x3 + · · ·+ anxn

where the numbers a1, . . . , an ∈ R are the combination’s coefficients . A linear
equation in the variables x1, . . . , xn has the form a1x1 + a2x2 + a3x3 + · · ·+
anxn = d where d ∈ R is the constant .

An n-tuple (s1, s2, . . . , sn) ∈ Rn is a solution of, or satisfies, that equation
if substituting the numbers s1, . . . , sn for the variables gives a true statement:
a1s1 + a2s2 + · · ·+ ansn = d. A system of linear equations

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = d1
a2,1x1 + a2,2x2 + · · ·+ a2,nxn = d2

...
am,1x1 + am,2x2 + · · ·+ am,nxn = dm

has the solution (s1, s2, . . . , sn) if that n-tuple is a solution of all of the equations.

1.2 Example The combination 3x1 + 2x2 of x1 and x2 is linear. The combination
3x21 + 2 sin(x2) is not linear, nor is 3x

2
1 + 2x2.

1.3 Example The ordered pair (−1, 5) is a solution of this system.

3x1 + 2x2 = 7

−x1 + x2 = 6

In contrast, (5,−1) is not a solution.
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Finding the set of all solutions is solving the system. We don’t need guesswork
or good luck; there is an algorithm that always works. This algorithm is Gauss’s
Method (or Gaussian elimination or linear elimination).

1.4 Example To solve this system

3x3 = 9

x1 + 5x2 − 2x3 = 2
1
3
x1 + 2x2 = 3

we transform it, step by step, until it is in a form that we can easily solve.
The first transformation rewrites the system by interchanging the first and

third row.

swap row 1 with row 3−→

1
3
x1 + 2x2 = 3

x1 + 5x2 − 2x3 = 2

3x3 = 9

The second transformation rescales the first row by a factor of 3.

multiply row 1 by 3−→
x1 + 6x2 = 9

x1 + 5x2 − 2x3 = 2

3x3 = 9

The third transformation is the only nontrivial one in this example. We mentally
multiply both sides of the first row by −1, mentally add that to the second row,
and write the result in as the new second row.

add −1 times row 1 to row 2−→
x1 + 6x2 = 9

−x2 − 2x3 =−7

3x3 = 9

The point of these steps is that we’ve brought the system to a form where we can
easily find the value of each variable. The bottom equation shows that x3 = 3.
Substituting 3 for x3 in the middle equation shows that x2 = 1. Substituting
those two into the top equation gives that x1 = 3. Thus the system has a unique
solution; the solution set is {(3, 1, 3) }.

Most of this subsection and the next one consists of examples of solving
linear systems by Gauss’s Method, which we will use throughout the book. It
is fast and easy. But before we do those examples we will first show that it
is also safe: Gauss’s Method never loses solutions (any solution to the system
before you apply the method is also a solution after), nor does it ever picks
up extraneous solutions (any tuple that is not a solution before is also not a
solution after).
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1.5 Theorem (Gauss’s Method) If a linear system is changed to another by one of
these operations

(1) an equation is swapped with another

(2) an equation has both sides multiplied by a nonzero constant

(3) an equation is replaced by the sum of itself and a multiple of another

then the two systems have the same set of solutions.

Each of the three Gauss’s Method operations has a restriction. Multiplying
a row by 0 is not allowed because obviously that can change the solution set.
Similarly, adding a multiple of a row to itself is not allowed because adding −1

times the row to itself has the effect of multiplying the row by 0. We disallow
swapping a row with itself to make some results in the fourth chapter easier,
and also because it’s pointless.

Proof We will cover the equation swap operation here. The other two cases
are Exercise 31.

Consider a linear system.

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = d1
...

ai,1x1 + ai,2x2 + · · ·+ ai,nxn = di
...

aj,1x1 + aj,2x2 + · · ·+ aj,nxn = dj
...

am,1x1 + am,2x2 + · · ·+ am,nxn = dm

The tuple (s1, . . . , sn) satisfies this system if and only if substituting the values
for the variables, the s’s for the x’s, gives a conjunction of true statements:
a1,1s1+a1,2s2+· · ·+a1,nsn = d1 and . . . ai,1s1+ai,2s2+· · ·+ai,nsn = di and
. . . aj,1s1+aj,2s2+ · · ·+aj,nsn = dj and . . . am,1s1+am,2s2+ · · ·+am,nsn =

dm.
In a list of statements joined with ‘and’ we can rearrange the order of the

statements. Thus this requirement is met if and only if a1,1s1 + a1,2s2 + · · ·+
a1,nsn = d1 and . . . aj,1s1+aj,2s2+ · · ·+aj,nsn = dj and . . . ai,1s1+ai,2s2+
· · ·+ai,nsn = di and . . . am,1s1+am,2s2+ · · ·+am,nsn = dm. This is exactly
the requirement that (s1, . . . , sn) solves the system after the row swap. QED
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1.6 Definition The three operations from Theorem 1.5 are the elementary re-
duction operations, or row operations , or Gaussian operations. They are
swapping , multiplying by a scalar (or rescaling), and row combination .

When writing out the calculations, we will abbreviate ‘row i’ by ‘ρi’. For
instance, we will denote a row combination operation by kρi + ρj, with the row
that changes written second. To save writing we will often combine addition
steps when they use the same ρi as in the next example.

1.7 Example Gauss’s Method systematically applies the row operations to solve
a system. Here is a typical case.

x+ y = 0

2x− y+ 3z= 3

x− 2y− z= 3

We begin by using the first row to eliminate the 2x in the second row and the x
in the third. To get rid of the 2x we mentally multiply the entire first row by
−2, add that to the second row, and write the result in as the new second row.
To eliminate the x in the third row we multiply the first row by −1, add that to
the third row, and write the result in as the new third row.

−2ρ1+ρ2−→
−ρ1+ρ3

x+ y = 0

−3y+ 3z= 3

−3y− z= 3

We finish by transforming the second system into a third, where the bottom
equation involves only one unknown. We do that by using the second row to
eliminate the y term from the third row.

−ρ2+ρ3−→
x+ y = 0

−3y+ 3z= 3

−4z= 0

Now finding the system’s solution is easy. The third row gives z = 0. Substitute
that back into the second row to get y = −1. Then substitute back into the first
row to get x = 1.

1.8 Example For the Physics problem from the start of this chapter, Gauss’s
Method gives this.

40h+ 15c= 100

−50h+ 25c= 50

5/4ρ1+ρ2−→ 40h+ 15c= 100

(175/4)c= 175

So c = 4, and back-substitution gives that h = 1. (We will solve the Chemistry
problem later.)
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1.9 Example The reduction

x+ y+ z= 9

2x+ 4y− 3z= 1

3x+ 6y− 5z= 0

−2ρ1+ρ2−→
−3ρ1+ρ3

x+ y+ z= 9

2y− 5z=−17

3y− 8z=−27

−(3/2)ρ2+ρ3−→
x+ y+ z= 9

2y− 5z= −17

−(1/2)z=−(3/2)

shows that z = 3, y = −1, and x = 7.

As illustrated above, the point of Gauss’s Method is to use the elementary
reduction operations to set up back-substitution.

1.10 Definition In each row of a system, the first variable with a nonzero coefficient
is the row’s leading variable . A system is in echelon form if each leading
variable is to the right of the leading variable in the row above it, except for the
leading variable in the first row, and any all-zero rows are at the bottom.

1.11 Example The prior three examples only used the operation of row combina-
tion. This linear system requires the swap operation to get it into echelon form
because after the first combination

x− y = 0

2x− 2y+ z+ 2w= 4

y + w= 0

2z+ w= 5

−2ρ1+ρ2−→

x− y = 0

z+ 2w= 4

y + w= 0

2z+ w= 5

the second equation has no leading y. To get one, we put in place a lower-down
row that has a leading y.

ρ2↔ρ3−→

x− y = 0

y + w= 0

z+ 2w= 4

2z+ w= 5

(Had there been more than one suitable row below the second then we could
have swapped in any one.) With that, Gauss’s Method proceeds as before.

−2ρ3+ρ4−→

x− y = 0

y + w= 0

z+ 2w= 4

−3w=−3

Back-substitution gives w = 1, z = 2 , y = −1, and x = −1.
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Strictly speaking, to solve linear systems we don’t need the row rescaling
operation. We have introduced it here because it is convenient and because we
will use it later in this chapter as part of a variation of Gauss’s Method, the
Gauss-Jordan Method.

All of the systems seen so far have the same number of equations as unknowns.
All of them have a solution and for all of them there is only one solution. We
finish this subsection by seeing other things that can happen.

1.12 Example This system has more equations than variables.

x+ 3y= 1

2x+ y=−3

2x+ 2y=−2

Gauss’s Method helps us understand this system also, since this

−2ρ1+ρ2−→
−2ρ1+ρ3

x+ 3y= 1

−5y=−5

−4y=−4

shows that one of the equations is redundant. Echelon form

−(4/5)ρ2+ρ3−→
x+ 3y= 1

−5y=−5

0= 0

gives that y = 1 and x = −2. The ‘0 = 0’ reflects the redundancy.

Gauss’s Method is also useful on systems with more variables than equations.
The next subsection has many examples.

Another way that linear systems can differ from the examples shown above
is that some linear systems do not have a unique solution. This can happen in
two ways. The first is that a system can fail to have any solution at all.

1.13 Example Contrast the system in the last example with this one.

x+ 3y= 1

2x+ y=−3

2x+ 2y= 0

−2ρ1+ρ2−→
−2ρ1+ρ3

x+ 3y= 1

−5y=−5

−4y=−2

Here the system is inconsistent: no pair of numbers (s1, s2) satisfies all three
equations simultaneously. Echelon form makes the inconsistency obvious.

−(4/5)ρ2+ρ3−→
x+ 3y= 1

−5y=−5

0= 2

The solution set is empty.
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1.14 Example The prior system has more equations than unknowns but that
is not what causes the inconsistency—Example 1.12 has more equations than
unknowns and yet is consistent. Nor is having more equations than unknowns
necessary for inconsistency, as we see with this inconsistent system that has the
same number of equations as unknowns.

x+ 2y= 8

2x+ 4y= 8

−2ρ1+ρ2−→ x+ 2y= 8

0=−8

The other way that a linear system can fail to have a unique solution, besides
having no solutions, is to have many solutions.

1.15 Example In this system

x+ y= 4

2x+ 2y= 8

any pair of numbers satisfying the first equation also satisfies the second. The
solution set {(x, y) | x+ y = 4 } is infinite; some example member pairs are (0, 4),
(−1, 5), and (2.5, 1.5).

The result of applying Gauss’s Method here contrasts with the prior example
because we do not get a contradictory equation.

−2ρ1+ρ2−→ x+ y= 4

0= 0

Don’t be fooled by that example. A 0 = 0 equation does not signal that a
system has many solutions.

1.16 Example The absence of a 0 = 0 equation does not keep a system from
having many different solutions. This system is in echelon form, has no 0 = 0,
but has infinitely many solutions.

x+ y+ z= 0

y+ z= 0

Some solutions are: (0, 1,−1), (0, 1/2,−1/2), (0, 0, 0), and (0,−π, π). Any triple
whose first component is 0 and whose second component is the negative of the
third is a solution.

Nor does the presence of a 0 = 0 mean that the system must have many
solutions. Example 1.12 shows that. So does this system, which does not have
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any solutions at all despite that in echelon form it has a 0 = 0 row.

2x − 2z= 6

y+ z= 1

2x+ y− z= 7

3y+ 3z= 0

−ρ1+ρ3−→

2x − 2z= 6

y+ z= 1

y+ z= 1

3y+ 3z= 0

−ρ2+ρ3−→
−3ρ2+ρ4

2x − 2z= 6

y+ z= 1

0= 0

0=−3

In summary, Gauss’s Method uses the row operations to set a system up for
back substitution. If any step shows a contradictory equation then we can stop
with the conclusion that the system has no solutions. If we reach echelon form
without a contradictory equation, and each variable is a leading variable in its
row, then the system has a unique solution and we find it by back substitution.
Finally, if we reach echelon form without a contradictory equation, and there is
not a unique solution—that is, at least one variable is not a leading variable—
then the system has many solutions.

The next subsection explores the third case. We will see that such a system
must have infinitely many solutions and we will describe the solution set.

Note Here, and in the rest of the book, you must justify all of your exercise
answers. For instance, if a question asks whether a system has a solution
then you must justify a yes response by producing the solution and must
justify a no response by showing that no solution exists.

Exercises

X 1.17 Use Gauss’s Method to find the unique solution for each system.

(a)
2x + 3y = 13

x − y = −1
(b)

x − z = 0

3x + y = 1

−x + y + z = 4

X 1.18 Use Gauss’s Method to solve each system or conclude ‘many solutions’ or ‘no
solutions’.

(a) 2x + 2y = 5

x − 4y = 0

(b) −x + y = 1

x + y = 2

(c) x − 3y + z = 1

x + y + 2z = 14

(d) −x − y = 1

−3x − 3y = 2

(e) 4y + z = 20

2x − 2y + z = 0

x + z = 5

x + y − z = 10

(f) 2x + z +w = 5

y −w = −1

3x − z −w = 0

4x + y + 2z +w = 9

X 1.19 We can solve linear systems by methods other than Gauss’s. One often taught
in high school is to solve one of the equations for a variable, then substitute the
resulting expression into other equations. Then we repeat that step until there
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is an equation with only one variable. From that we get the first number in the
solution and then we get the rest with back-substitution. This method takes longer
than Gauss’s Method, since it involves more arithmetic operations, and is also
more likely to lead to errors. To illustrate how it can lead to wrong conclusions,
we will use the system

x + 3y = 1

2x + y = −3

2x + 2y = 0

from Example 1.13.
(a) Solve the first equation for x and substitute that expression into the second
equation. Find the resulting y.
(b) Again solve the first equation for x, but this time substitute that expression
into the third equation. Find this y.

What extra step must a user of this method take to avoid erroneously concluding a
system has a solution?

X 1.20 For which values of k are there no solutions, many solutions, or a unique
solution to this system?

x − y = 1

3x − 3y = k

X 1.21 This system is not linear in that it says sinα instead of α

2 sinα − cosβ + 3 tanγ = 3

4 sinα + 2 cosβ − 2 tanγ = 10

6 sinα − 3 cosβ + tanγ = 9

and yet we can apply Gauss’s Method. Do so. Does the system have a solution?

X 1.22 [Anton] What conditions must the constants, the b’s, satisfy so that each of
these systems has a solution? Hint. Apply Gauss’s Method and see what happens
to the right side.

(a) x − 3y = b1
3x + y = b2
x + 7y = b3
2x + 4y = b4

(b) x1 + 2x2 + 3x3 = b1
2x1 + 5x2 + 3x3 = b2
x1 + 8x3 = b3

1.23 True or false: a system with more unknowns than equations has at least one
solution. (As always, to say ‘true’ you must prove it, while to say ‘false’ you must
produce a counterexample.)

1.24 Must any Chemistry problem like the one that starts this subsection—a balance
the reaction problem—have infinitely many solutions?

X 1.25 Find the coefficients a, b, and c so that the graph of f(x) = ax2 + bx+ c passes
through the points (1, 2), (−1, 6), and (2, 3).

1.26 After Theorem 1.5 we note that multiplying a row by 0 is not allowed because
that could change a solution set. Give an example of a system with solution set S0
where after multiplying a row by 0 the new system has a solution set S1 and S0 is
a proper subset of S1. Give an example where S0 = S1.
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1.27 Gauss’s Method works by combining the equations in a system to make new
equations.
(a) Can we derive the equation 3x− 2y = 5 by a sequence of Gaussian reduction
steps from the equations in this system?

x + y = 1

4x − y = 6

(b) Can we derive the equation 5x−3y = 2 with a sequence of Gaussian reduction
steps from the equations in this system?

2x + 2y = 5

3x + y = 4

(c) Can we derive 6x− 9y+ 5z = −2 by a sequence of Gaussian reduction steps
from the equations in the system?

2x + y − z = 4

6x − 3y + z = 5

1.28 Prove that, where a, b, . . . , e are real numbers and a 6= 0, if
ax+ by = c

has the same solution set as
ax+ dy = e

then they are the same equation. What if a = 0?
X 1.29 Show that if ad− bc 6= 0 then

ax + by = j

cx + dy = k

has a unique solution.
X 1.30 In the system

ax + by = c

dx + ey = f

each of the equations describes a line in the xy-plane. By geometrical reasoning,
show that there are three possibilities: there is a unique solution, there is no
solution, and there are infinitely many solutions.

1.31 Finish the proof of Theorem 1.5.
1.32 Is there a two-unknowns linear system whose solution set is all of R2?

X 1.33 Are any of the operations used in Gauss’s Method redundant? That is, can we
make any of the operations from a combination of the others?

1.34 Prove that each operation of Gauss’s Method is reversible. That is, show that
if two systems are related by a row operation S1 → S2 then there is a row operation
to go back S2 → S1.

? 1.35 [Anton] A box holding pennies, nickels and dimes contains thirteen coins with
a total value of 83 cents. How many coins of each type are in the box? (These are
US coins; a penny is 1 cent, a nickel is 5 cents, and a dime is 10 cents.)

? 1.36 [Con. Prob. 1955] Four positive integers are given. Select any three of the
integers, find their arithmetic average, and add this result to the fourth integer.
Thus the numbers 29, 23, 21, and 17 are obtained. One of the original integers
is:



12 Chapter One. Linear Systems

(a) 19 (b) 21 (c) 23 (d) 29 (e) 17

? X 1.37 [Am. Math. Mon., Jan. 1935] Laugh at this: AHAHA+TEHE = TEHAW. It
resulted from substituting a code letter for each digit of a simple example in
addition, and it is required to identify the letters and prove the solution unique.

? 1.38 [Wohascum no. 2] The Wohascum County Board of Commissioners, which has
20 members, recently had to elect a President. There were three candidates (A, B,
and C); on each ballot the three candidates were to be listed in order of preference,
with no abstentions. It was found that 11 members, a majority, preferred A over
B (thus the other 9 preferred B over A). Similarly, it was found that 12 members
preferred C over A. Given these results, it was suggested that B should withdraw,
to enable a runoff election between A and C. However, B protested, and it was
then found that 14 members preferred B over C! The Board has not yet recovered
from the resulting confusion. Given that every possible order of A, B, C appeared
on at least one ballot, how many members voted for B as their first choice?

? 1.39 [Am. Math. Mon., Jan. 1963] “This system of n linear equations with n un-
knowns,” said the Great Mathematician, “has a curious property.”

“Good heavens!” said the Poor Nut, “What is it?”
“Note,” said the Great Mathematician, “that the constants are in arithmetic

progression.”
“It’s all so clear when you explain it!” said the Poor Nut. “Do you mean like

6x+ 9y = 12 and 15x+ 18y = 21?”
“Quite so,” said the Great Mathematician, pulling out his bassoon. “Indeed,

the system has a unique solution. Can you find it?”
“Good heavens!” cried the Poor Nut, “I am baffled.”
Are you?

I.2 Describing the Solution Set

A linear system with a unique solution has a solution set with one element. A
linear system with no solution has a solution set that is empty. In these cases
the solution set is easy to describe. Solution sets are a challenge to describe only
when they contain many elements.

2.1 Example This system has many solutions because in echelon form

2x + z= 3

x− y− z= 1

3x− y = 4

−(1/2)ρ1+ρ2−→
−(3/2)ρ1+ρ3

2x + z= 3

−y− (3/2)z=−1/2

−y− (3/2)z=−1/2

−ρ2+ρ3−→
2x + z= 3

−y− (3/2)z=−1/2

0= 0
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not all of the variables are leading variables. Theorem 1.5 shows that an (x, y, z)

satisfies the first system if and only if it satisfies the third. So we can describe
the solution set {(x, y, z) | 2x+ z = 3 and x− y− z = 1 and 3x− y = 4 } in this
way.

{(x, y, z) | 2x+ z = 3 and −y− 3z/2 = −1/2 } (∗)

This description is better because it has two equations instead of three but it is
not optimal because it still has some hard to understand interactions among the
variables.

To improve it, use the variable that does not lead any equation, z, to describe
the variables that do lead, x and y. The second equation gives y = (1/2)−(3/2)z

and the first equation gives x = (3/2)−(1/2)z. Thus we can describe the solution
set in this way.

{(x, y, z) = ((3/2) − (1/2)z, (1/2) − (3/2)z, z) | z ∈ R } (∗∗)

Compared with (∗), the advantage of (∗∗) is that z can be any real number.
This makes the job of deciding which tuples are in the solution set much easier.
For instance, taking z = 2 shows that (1/2,−5/2, 2) is a solution.

2.2 Definition In an echelon form linear system the variables that are not leading
are free.

2.3 Example Reduction of a linear system can end with more than one variable
free. Gauss’s Method on this system

x+ y+ z− w= 1

y− z+ w=−1

3x + 6z− 6w= 6

−y+ z− w= 1

−3ρ1+ρ3−→

x+ y+ z− w= 1

y− z+ w=−1

−3y+ 3z− 3w= 3

−y+ z− w= 1

3ρ2+ρ3−→
ρ2+ρ4

x+ y+ z−w= 1

y− z+w=−1

0= 0

0= 0

leaves x and y leading and both z and w free. To get the description that we
prefer, we work from the bottom. We first express the leading variable y in terms
of z and w, as y = −1+ z−w. Moving up to the top equation, substituting for
y gives x+ (−1+ z−w) + z−w = 1 and solving for x leaves x = 2− 2z+ 2w.
The solution set

{(2− 2z+ 2w,−1+ z−w, z,w) | z,w ∈ R } (∗∗)

has the leading variables in terms of the variables that are free.
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2.4 Example The list of leading variables may skip over some columns. After
this reduction

2x− 2y = 0

z+ 3w= 2

3x− 3y = 0

x− y+ 2z+ 6w= 4

−(3/2)ρ1+ρ3−→
−(1/2)ρ1+ρ4

2x− 2y = 0

z+ 3w= 2

0= 0

2z+ 6w= 4

−2ρ2+ρ4−→

2x− 2y = 0

z+ 3w= 2

0= 0

0= 0

x and z are the leading variables, not x and y. The free variables are y and w
and so we can describe the solution set as {(y, y, 2− 3w,w) | y,w ∈ R }. For
instance, (1, 1, 2, 0) satisfies the system—take y = 1 and w = 0. The four-tuple
(1, 0, 5, 4) is not a solution since its first coordinate does not equal its second.

A variable that we use to describe a family of solutions is a parameter. We
say that the solution set in the prior example is parametrized with y and w.

(The terms ‘parameter’ and ‘free variable’ do not mean the same thing. In the
prior example y and w are free because in the echelon form system they do not
lead while they are parameters because of how we used them to describe the set
of solutions. Had we instead rewritten the second equation as w = 2/3− (1/3)z

then the free variables would still be y and w but the parameters would be y
and z.)

In the rest of this book we will solve linear systems by bringing them to
echelon form and then parametrizing with the free variables.

2.5 Example This is another system with infinitely many solutions.

x+ 2y = 1

2x + z = 2

3x+ 2y+ z−w= 4

−2ρ1+ρ2−→
−3ρ1+ρ3

x+ 2y = 1

−4y+ z = 0

−4y+ z−w= 1

−ρ2+ρ3−→
x+ 2y = 1

−4y+ z = 0

−w= 1

The leading variables are x, y, and w. The variable z is free. Notice that,
although there are infinitely many solutions, the value of w doesn’t vary but is
constant at −1. To parametrize, write w in terms of z with w = −1+ 0z. Then
y = (1/4)z. Substitute for y in the first equation to get x = 1 − (1/2)z. The
solution set is {(1− (1/2)z, (1/4)z, z,−1) | z ∈ R }.

Parametrizing solution sets shows that systems with free variables have
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infinitely many solutions. For instance, above z takes on all of infinitely many
real number values, each associated with a different solution.

We finish this subsection by developing a streamlined notation for linear
systems and their solution sets.

2.6 Definition An m×n matrix is a rectangular array of numbers with m rows
and n columns . Each number in the matrix is an entry .

We usually denote a matrix with an upper case roman letters. For instance,

A =

(
1 2.2 5

3 4 −7

)
has 2 rows and 3 columns and so is a 2×3 matrix. Read that aloud as “two-by-
three”; the number of rows is always given first. (The matrix has parentheses
on either side so that when two matrices are adjacent we can tell where one
ends and the other begins.) We name matrix entries with the corresponding
lower-case letter so that a2,1 = 3 is the entry in the second row and first column
of the above array. Note that the order of the subscripts matters: a1,2 6= a2,1
since a1,2 = 2.2.

We write Mn×m for the set of all n×m matrices.
We use matrices to do Gauss’s Method in essentially the same way that we

did it for systems of equations: where a row’s leading entry . is its first nonzero
entry (if it has one), we perform row operations to arrive at matrix echelon
form,where the leading entry in lower rows are to the right of those in the rows
above. We switch to this notation because it lightens the clerical load of Gauss’s
Method—the copying of variables and the writing of +’s and =’s.

2.7 Example We can abbreviate this linear system

x+ 2y = 4

y− z= 0

x + 2z= 4

with this matrix. 1 2 0 4

0 1 −1 0

1 0 2 4


The vertical bar reminds a reader of the difference between the coefficients on
the system’s left hand side and the constants on the right. With a bar, this is
an augmented matrix.1 2 0 4

0 1 −1 0

1 0 2 4

 −ρ1+ρ3−→

1 2 0 4

0 1 −1 0

0 −2 2 0

 2ρ2+ρ3−→

1 2 0 4

0 1 −1 0

0 0 0 0


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The second row stands for y− z = 0 and the first row stands for x+ 2y = 4 so
the solution set is {(4− 2z, z, z) | z ∈ R }.

Matrix notation also clarifies the descriptions of solution sets. Example 2.3’s
{(2− 2z+ 2w,−1+ z−w, z,w) | z,w ∈ R } is hard to read. We will rewrite it
to group all of the constants together, all of the coefficients of z together, and
all of the coefficients of w together. We write them vertically, in one-column
matrices.

{


2

−1

0

0

+


−2

1

1

0

 · z+

2

−1

0

1

 ·w | z,w ∈ R }

For instance, the top line says that x = 2 − 2z + 2w and the second line says
that y = −1 + z −w. (Our next section gives a geometric interpretation that
will help picture the solution sets.)

2.8 Definition A vector (or column vector) is a matrix with a single column.
A matrix with a single row is a row vector . The entries of a vector are its
components . A column or row vector whose components are all zeros is a zero
vector.

Vectors are an exception to the convention of representing matrices with
capital roman letters. We use lower-case roman or greek letters overlined with an
arrow: ~a, ~b, . . . or ~α, ~β, . . . (boldface is also common: a or α). For instance,
this is a column vector with a third component of 7.

~v =

13
7


A zero vector is denoted ~0. There are many different zero vectors— the one-tall
zero vector, the two-tall zero vector, etc.—but nonetheless we will often say
“the” zero vector, expecting that the size will be clear from the context.

2.9 Definition The linear equation a1x1+a2x2+ · · · +anxn = d with unknowns
x1, . . . , xn is satisfied by

~s =

s1...
sn


if a1s1 + a2s2 + · · · + ansn = d. A vector satisfies a linear system if it satisfies
each equation in the system.
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The style of description of solution sets that we use involves adding the
vectors, and also multiplying them by real numbers. Before we give the examples
showing the style we first need to define these operations.

2.10 Definition The vector sum of ~u and ~v is the vector of the sums.

~u+~v =

u1...
un

+

v1...
vn

 =

u1 + v1...
un + vn


Note that for the addition to be defined the vectors must have the same

number of entries. This entry-by-entry addition works for any pair of matrices,
not just vectors, provided that they have the same number of rows and columns.

2.11 Definition The scalar multiplication of the real number r and the vector ~v
is the vector of the multiples.

r ·~v = r ·

v1...
vn

 =

rv1...
rvn


As with the addition operation, the entry-by-entry scalar multiplication

operation extends beyond vectors to apply to any matrix.
We write scalar multiplication either as r ·~v or ~v · r, or even without the ‘·’

symbol: r~v. (Do not refer to scalar multiplication as ‘scalar product’ because we
will use that name for a different operation.)

2.12 Example23
1

+

 3

−1

4

 =

2+ 33− 1

1+ 4

 =

52
5

 7 ·


1

4

−1

−3

 =


7

28

−7

−21


Observe that the definitions of addition and scalar multiplication agree where

they overlap; for instance, ~v+~v = 2~v.
With these definitions, we are set to use matrix and vector notation to both

solve systems and express the solution.

2.13 Example This system

2x+ y − w = 4

y + w+ u= 4

x − z+ 2w = 0
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reduces in this way.2 1 0 −1 0 4

0 1 0 1 1 4

1 0 −1 2 0 0

 −(1/2)ρ1+ρ3−→

2 1 0 −1 0 4

0 1 0 1 1 4

0 −1/2 −1 5/2 0 −2


(1/2)ρ2+ρ3−→

2 1 0 −1 0 4

0 1 0 1 1 4

0 0 −1 3 1/2 0


The solution set is {(w+ (1/2)u, 4−w− u, 3w+ (1/2)u,w, u) | w,u ∈ R }. We
write that in vector form.

{


x

y

z

w

u

 =


0

4

0

0

0

+


1

−1

3

1

0

w+


1/2

−1

1/2

0

1

u | w,u ∈ R }

Note how well vector notation sets off the coefficients of each parameter. For
instance, the third row of the vector form shows plainly that if u is fixed then z
increases three times as fast as w. Another thing shown plainly is that setting
both w and u to zero gives that

x

y

z

w

u

 =


0

4

0

0

0


is a particular solution of the linear system.

2.14 Example In the same way, this system

x− y+ z= 1

3x + z= 3

5x− 2y+ 3z= 5

reduces 1 −1 1 1

3 0 1 3

5 −2 3 5

 −3ρ1+ρ2−→
−5ρ1+ρ3

1 −1 1 1

0 3 −2 0

0 3 −2 0


−ρ2+ρ3−→

1 −1 1 1

0 3 −2 0

0 0 0 0


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to a one-parameter solution set.

{

10
0

+

−1/3

2/3

1

 z | z ∈ R }

As in the prior example, the vector not associated with the parameter10
0


is a particular solution of the system.

Before the exercises, we will consider what we have accomplished and what
we have yet to do.

So far we have done the mechanics of Gauss’s Method. We have not stopped
to consider any of the interesting questions that arise, except for proving Theo-
rem 1.5—which justifies the method by showing that it gives the right answers.

For example, can we always describe solution sets as above, with a particular
solution vector added to an unrestricted linear combination of some other vectors?
We’ve noted that the solution sets we described in this way have infinitely many
solutions so an answer to this question would tell us about the size of solution
sets.

Many questions arise from our observation that we can do Gauss’s Method
in more than one way (for instance, when swapping rows we may have a choice
of more than one row). Theorem 1.5 says that we must get the same solution
set no matter how we proceed but if we do Gauss’s Method in two ways must
we get the same number of free variables in each echelon form system? Must
those be the same variables, that is, is it impossible to solve a problem one way
to get y and w free and solve it another way to get y and z free?

In the rest of this chapter we will answer these questions. The answer to
each is ‘yes’. In the next subsection we do the first one: we will prove that we
can always describe solution sets in that way. Then, in this chapter’s second
section, we will use that understanding to describe the geometry of solution sets.
In this chapter’s final section, we will settle the questions about the parameters.

When we are done, we will not only have a solid grounding in the practice of
Gauss’s Method but we will also have a solid grounding in the theory. We will
know exactly what can and cannot happen in a reduction.

Exercises
X 2.15 Find the indicated entry of the matrix, if it is defined.

A =

(
1 3 1

2 −1 4

)
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(a) a2,1 (b) a1,2 (c) a2,2 (d) a3,1

X 2.16 Give the size of each matrix.

(a)
(
1 0 4

2 1 5

)
(b)

 1 1

−1 1

3 −1

 (c)
(
5 10

10 5

)

X 2.17 Do the indicated vector operation, if it is defined.

(a)

21
1

 +

30
4

 (b) 5
(
4

−1

)
(c)

15
1

 −

31
1

 (d) 7
(
2

1

)
+ 9

(
3

5

)

(e)
(
1

2

)
+

12
3

 (f) 6

31
1

− 4

20
3

+ 2

11
5


X 2.18 Solve each system using matrix notation. Express the solution using vec-

tors.
(a) 3x + 6y = 18

x + 2y = 6

(b) x + y = 1

x − y = −1

(c) x1 + x3 = 4

x1 − x2 + 2x3 = 5

4x1 − x2 + 5x3 = 17

(d) 2a + b − c = 2

2a + c = 3

a − b = 0

(e) x + 2y − z = 3

2x + y +w = 4

x − y + z +w = 1

(f) x + z +w = 4

2x + y −w = 2

3x + y + z = 7

X 2.19 Solve each system using matrix notation. Give each solution set in vector
notation.

(a) 2x + y − z = 1

4x − y = 3

(b) x − z = 1

y + 2z −w = 3

x + 2y + 3z −w = 7

(c) x − y + z = 0

y +w = 0

3x − 2y + 3z +w = 0

−y −w = 0

(d) a + 2b + 3c + d − e = 1

3a − b + c + d + e = 3

X 2.20 The vector is in the set. What value of the parameters produces that vec-
tor?

(a)
(
5

−5

)
, {
(
1

−1

)
k | k ∈ R }

(b)

−1

2

1

, {

−2

1

0

 i+
30
1

 j | i, j ∈ R }

(c)

 0

−4

2

, {

11
0

m+

20
1

n | m,n ∈ R }

2.21 Decide if the vector is in the set.

(a)
(
3

−1

)
, {
(
−6

2

)
k | k ∈ R }

(b)
(
5

4

)
, {
(
5

−4

)
j | j ∈ R }
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(c)

 2

1

−1

, {

 0

3

−7

+

 1

−1

3

 r | r ∈ R }

(d)

10
1

, {

20
1

 j+
−3

−1

1

k | j, k ∈ R }

2.22 [Cleary] A farmer with 1200 acres is considering planting three different crops,
corn, soybeans, and oats. The farmer wants to use all 1200 acres. Seed corn costs
$20 per acre, while soybean and oat seed cost $50 and $12 per acre respectively.
The farmer has $40 000 available to buy seed and intends to spend it all.
(a) Use the information above to formulate two linear equations with three
unknowns and solve it.
(b) Solutions to the system are choices that the farmer can make. Write down
two reasonable solutions.
(c) Suppose that in the fall when the crops mature, the farmer can bring in
revenue of $100 per acre for corn, $300 per acre for soybeans and $80 per acre
for oats. Which of your two solutions in the prior part would have resulted in a
larger revenue?

2.23 Parametrize the solution set of this one-equation system.

x1 + x2 + · · ·+ xn = 0

X 2.24 (a) Apply Gauss’s Method to the left-hand side to solve
x + 2y − w = a

2x + z = b

x + y + 2w = c

for x, y, z, and w, in terms of the constants a, b, and c.
(b) Use your answer from the prior part to solve this.

x + 2y − w = 3

2x + z = 1

x + y + 2w = −2

X 2.25 Why is the comma needed in the notation ‘ai,j’ for matrix entries?
X 2.26 Give the 4×4 matrix whose i, j-th entry is

(a) i+ j; (b) −1 to the i+ j power.
2.27 For any matrix A, the transpose of A, written AT, is the matrix whose columns
are the rows of A. Find the transpose of each of these.

(a)
(
1 2 3

4 5 6

)
(b)

(
2 −3

1 1

)
(c)

(
5 10

10 5

)
(d)

11
0


X 2.28 (a) Describe all functions f(x) = ax2+bx+c such that f(1) = 2 and f(−1) = 6.

(b) Describe all functions f(x) = ax2 + bx+ c such that f(1) = 2.
2.29 Show that any set of five points from the plane R2 lie on a common conic section,
that is, they all satisfy some equation of the form ax2+by2+ cxy+dx+ ey+ f = 0

where some of a, . . . , f are nonzero.
2.30 Make up a four equations/four unknowns system having

(a) a one-parameter solution set;
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(b) a two-parameter solution set;
(c) a three-parameter solution set.

? 2.31 [Shepelev] This puzzle is from a Russian web-site http://www.arbuz.uz/ and
there are many solutions to it, but mine uses linear algebra and is very naive.
There’s a planet inhabited by arbuzoids (watermeloners, to translate from Russian).
Those creatures are found in three colors: red, green and blue. There are 13 red
arbuzoids, 15 blue ones, and 17 green. When two differently colored arbuzoids
meet, they both change to the third color.

The question is, can it ever happen that all of them assume the same color?

? 2.32 [USSR Olympiad no. 174]
(a) Solve the system of equations.

ax + y = a2

x + ay = 1

For what values of a does the system fail to have solutions, and for what values
of a are there infinitely many solutions?
(b) Answer the above question for the system.

ax + y = a3

x + ay = 1

? 2.33 [Math. Mag., Sept. 1952] In air a gold-surfaced sphere weighs 7588 grams. It
is known that it may contain one or more of the metals aluminum, copper, silver,
or lead. When weighed successively under standard conditions in water, benzene,
alcohol, and glycerin its respective weights are 6588, 6688, 6778, and 6328 grams.
How much, if any, of the forenamed metals does it contain if the specific gravities
of the designated substances are taken to be as follows?

Aluminum 2.7 Alcohol 0.81
Copper 8.9 Benzene 0.90

Gold 19.3 Glycerin 1.26

Lead 11.3 Water 1.00

Silver 10.8

I.3 General = Particular + Homogeneous

In the prior subsection the descriptions of solution sets all fit a pattern. They
have a vector that is a particular solution of the system added to an unre-
stricted combination of some other vectors. The solution set from Example 2.13
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illustrates.

{


0

4

0

0

0


particular
solution

+w


1

−1

3

1

0

+ u


1/2

−1

1/2

0

1


unrestricted
combination

| w,u ∈ R }

The combination is unrestricted in that w and u can be any real numbers—
there is no condition like “such that 2w− u = 0” to restrict which pairs w,u we
can use.

That example shows an infinite solution set fitting the pattern. The other
two kinds of solution sets also fit. A one-element solution set fits because it has
a particular solution, and the unrestricted combination part is trivial. (That is,
instead of being a combination of two vectors or of one vector, it is a combination
of no vectors. By convention the sum of an empty set of vectors is the zero
vector.) An empty solution set fits the pattern because there is no particular
solution and thus there are no sums of that form at all.

3.1 Theorem Any linear system’s solution set has the form

{~p+ c1~β1 + · · · + ck~βk | c1, . . . , ck ∈ R }

where ~p is any particular solution and where the number of vectors ~β1, . . . ,
~βk equals the number of free variables that the system has after a Gaussian
reduction.

The solution description has two parts, the particular solution ~p and the
unrestricted linear combination of the ~β’s. We shall prove the theorem with two
corresponding lemmas.

We will focus first on the unrestricted combination. For that we consider
systems that have the vector of zeroes as a particular solution so that we can
shorten ~p+ c1~β1 + · · ·+ ck~βk to c1~β1 + · · ·+ ck~βk.

3.2 Definition A linear equation is homogeneous if it has a constant of zero, so
that it can be written as a1x1 + a2x2 + · · · + anxn = 0.

3.3 Example With any linear system like

3x+ 4y= 3

2x− y= 1
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we associate a system of homogeneous equations by setting the right side to
zeros.

3x+ 4y= 0

2x− y= 0

Compare the reduction of the original system

3x+ 4y= 3

2x− y= 1

−(2/3)ρ1+ρ2−→ 3x+ 4y = 3

−(11/3)y= −1

with the reduction of the associated homogeneous system.

3x+ 4y= 0

2x− y= 0

−(2/3)ρ1+ρ2−→ 3x+ 4y= 0

−(11/3)y= 0

Obviously the two reductions go in the same way. We can study how to reduce
a linear systems by instead studying how to reduce the associated homogeneous
system.

Studying the associated homogeneous system has a great advantage over
studying the original system. Nonhomogeneous systems can be inconsistent.
But a homogeneous system must be consistent since there is always at least one
solution, the zero vector.

3.4 Example Some homogeneous systems have the zero vector as their only
solution.

3x+ 2y+ z= 0

6x+ 4y = 0

y+ z= 0

−2ρ1+ρ2−→
3x+ 2y+ z= 0

−2z= 0

y+ z= 0

ρ2↔ρ3−→
3x+ 2y+ z= 0

y+ z= 0

−2z= 0

3.5 Example Some homogeneous systems have many solutions. One is the
Chemistry problem from the first page of the first subsection.

7x − 7z = 0

8x+ y− 5z− 2w= 0

y− 3z = 0

3y− 6z− w= 0

−(8/7)ρ1+ρ2−→

7x − 7z = 0

y+ 3z− 2w= 0

y− 3z = 0

3y− 6z− w= 0

−ρ2+ρ3−→
−3ρ2+ρ4

7x − 7z = 0

y+ 3z− 2w= 0

−6z+ 2w= 0

−15z+ 5w= 0

−(5/2)ρ3+ρ4−→

7x − 7z = 0

y+ 3z− 2w= 0

−6z+ 2w= 0

0= 0
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The solution set

{


1/3

1

1/3

1

w | w ∈ R }

has many vectors besides the zero vector (if we interpret w as a number of
molecules then solutions make sense only when w is a nonnegative multiple of
3).

3.6 Lemma For any homogeneous linear system there exist vectors ~β1, . . . , ~βk
such that the solution set of the system is

{c1~β1 + · · ·+ ck~βk | c1, . . . , ck ∈ R }

where k is the number of free variables in an echelon form version of the system.

We will make two points before the proof. The first is that the basic idea of
the proof is straightforward. Consider this system of homogeneous equations in
echelon form.

x+ y+ 2z+ u+ v= 0

y+ z+ u− v= 0

u+ v= 0

Start with the bottom equation. Express its leading variable in terms of the
free variables with u = −v. For the next row up, substitute for the leading
variable u of the row below y+ z+ (−v) − v = 0 and solve for this row’s leading
variable y = −z+ 2v. Iterate: on the next row up, substitute expressions found
in lower rows x+(−z+ 2v)+ 2z+(−v)+ v = 0 and solve for the leading variable
x = −z− 2v. To finish, write the solution in vector notation

x

y

z

s

t

 =


−1

−1

1

0

0

 z+

−2

2

0

−1

1

 v for z, v ∈ R

and recognize that the ~β1 and ~β2 of the lemma are the vectors associated with
the free variables z and v.

The prior paragraph is an example, not a proof. But it does suggest the
second point about the proof, its approach. The example moves row-by-row up
the system, using the equations from lower rows to do the next row. This points
to doing the proof by mathematical induction.∗

∗ More information on mathematical induction is in the appendix.
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Induction is an important and non-obvious proof technique that we shall
use a number of times in this book. We will do proofs by induction in two
steps, a base step and an inductive step. In the base step we verify that the
statement is true for some first instance, here that for the bottom equation we
can write the leading variable in terms of free variables. In the inductive step
we must establish an implication, that if the statement is true for all prior cases
then it follows for the present case also. Here we will establish that if for the
bottom-most t rows we can express the leading variables in terms of the free
variables, then for the t + 1-th row from the bottom we can also express the
leading variable in terms of those that are free.

Those two steps together prove the statement for all the rows because by
the base step it is true for the bottom equation, and by the inductive step the
fact that it is true for the bottom equation shows that it is true for the next one
up. Then another application of the inductive step implies that it is true for the
third equation up, etc.

Proof Apply Gauss’s Method to get to echelon form. There may be some 0 = 0
equations; we ignore these (if the system consists only of 0 = 0 equations then
the lemma is trivially true because there are no leading variables). But because
the system is homogeneous there are no contradictory equations.

We will use induction to verify that each leading variable can be expressed
in terms of free variables. That will finish the proof because we can use the free
variables as parameters and the ~β’s are the vectors of coefficients of those free
variables.

For the base step consider the bottom-most equation

am,`mx`m + am,`m+1x`m+1 + · · ·+ am,nxn = 0 (∗)

where am,`m 6= 0. (The ‘`’ means “leading” so that x`m is the leading variable
in row m.) This is the bottom row so any variables after the leading one must
be free. Move these to the right hand side and divide by am,`m

x`m = (−am,`m+1/am,`m)x`m+1 + · · ·+ (−am,n/am,`m)xn

to express the leading variable in terms of free variables. (There is a tricky
technical point here: if in the bottom equation (∗) there are no variables to
the right of xlm then x`m = 0. This satisfies the statement we are verifying
because, as alluded to at the start of this subsection, it has x`m written as a
sum of a number of the free variables, namely as the sum of zero many, under
the convention that a trivial sum totals to 0.)

For the inductive step assume that the statement holds for the bottom-most
t rows, with 0 6 t < m − 1. That is, assume that for the m-th equation, and
the (m− 1)-th equation, etc., up to and including the (m− t)-th equation, we
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can express the leading variable in terms of free ones. We must verify that this
then also holds for the next equation up, the (m−(t+ 1))-th equation. For that,
take each variable that leads in a lower equation x`m , . . . , x`m−t

and substitute
its expression in terms of free variables. We only need expressions for leading
variables from lower equations because the system is in echelon form, so leading
variables in higher equation do not appear in this equation. The result has a
leading term of am−(t+1),`m−(t+1)

x`m−(t+1)
with am−(t+1),`m−(t+1)

6= 0, and
the rest of the left hand side is a linear combination of free variables. Move the
free variables to the right side and divide by am−(t+1),`m−(t+1)

to end with this
equation’s leading variable x`m−(t+1)

in terms of free variables.
We have done both the base step and the inductive step so by the principle

of mathematical induction the proposition is true. QED

This shows, as discussed between the lemma and its proof, that we can
parametrize solution sets using the free variables. We say that the set of
vectors {c1~β1 + · · ·+ ck~βk | c1, . . . , ck ∈ R } is generated by or spanned by the
set {~β1, . . . , ~βk }.

To finish the proof of Theorem 3.1 the next lemma considers the particular
solution part of the solution set’s description.

3.7 Lemma For a linear system and for any particular solution ~p, the solution
set equals {~p+ ~h | ~h satisfies the associated homogeneous system }.

Proof We will show mutual set inclusion, that any solution to the system is in
the above set and that anything in the set is a solution of the system.∗

For set inclusion the first way, that if a vector solves the system then it is in
the set described above, assume that ~s solves the system. Then ~s− ~p solves the
associated homogeneous system since for each equation index i,

ai,1(s1 − p1) + · · ·+ ai,n(sn − pn)

= (ai,1s1 + · · ·+ ai,nsn) − (ai,1p1 + · · ·+ ai,npn) = di − di = 0

where pj and sj are the j-th components of ~p and ~s. Express ~s in the required
~p+ ~h form by writing ~s− ~p as ~h.

For set inclusion the other way, take a vector of the form ~p + ~h, where ~p

solves the system and ~h solves the associated homogeneous system and note
that ~p+ ~h solves the given system since for any equation index i,

ai,1(p1 + h1) + · · ·+ ai,n(pn + hn)

= (ai,1p1 + · · ·+ ai,npn) + (ai,1h1 + · · ·+ ai,nhn) = di + 0 = di

where as earlier pj and hj are the j-th components of ~p and ~h. QED

∗ More information on set equality is in the appendix.
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The two lemmas together establish Theorem 3.1. Remember that theorem
with the slogan, “General = Particular+ Homogeneous”.

3.8 Example This system illustrates Theorem 3.1.

x+ 2y− z= 1

2x+ 4y = 2

y− 3z= 0

Gauss’s Method

−2ρ1+ρ2−→
x+ 2y− z= 1

2z= 0

y− 3z= 0

ρ2↔ρ3−→
x+ 2y− z= 1

y− 3z= 0

2z= 0

shows that the general solution is a singleton set.

{

10
0

 }

That single vector is obviously a particular solution. The associated homogeneous
system reduces via the same row operations

x+ 2y− z= 0

2x+ 4y = 0

y− 3z= 0

−2ρ1+ρ2−→ ρ2↔ρ3−→
x+ 2y− z= 0

y− 3z= 0

2z= 0

to also give a singleton set.

{

00
0

 }

So, as discussed at the start of this subsection, in this single-solution case the
general solution results from taking the particular solution and adding to it the
unique solution of the associated homogeneous system.

3.9 Example The start of this subsection also discusses that the case where
the general solution set is empty fits the General = Particular+Homogeneous
pattern too. This system illustrates.

x + z+ w=−1

2x− y + w= 3

x+ y+ 3z+ 2w= 1

−2ρ1+ρ2−→
−ρ1+ρ3

x + z+w=−1

−y− 2z−w= 5

y+ 2z+w= 2

It has no solutions because the final two equations conflict. But the associated
homogeneous system does have a solution, as do all homogeneous systems.

x + z+ w= 0

2x− y + w= 0

x+ y+ 3z+ 2w= 0

−2ρ1+ρ2−→
−ρ1+ρ3

ρ2+ρ3−→
x + z+w= 0

−y− 2z−w= 0

0= 0
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In fact, the solution set is infinite.

{


−1

−2

1

0

 z+

−1

−1

0

1

w | z,w ∈ R }

Nonetheless, because the original system has no particular solution, its general
solution set is empty—there are no vectors of the form ~p+ ~h because there are
no ~p ’s.

3.10 Corollary Solution sets of linear systems are either empty, have one element,
or have infinitely many elements.

Proof We’ve seen examples of all three happening so we need only prove that
there are no other possibilities.

First observe a homogeneous system with at least one non-~0 solution ~v has
infinitely many solutions. This is because any scalar multiple of ~v also solves the
homogeneous system and there are infinitely many vectors in the set of scalar
multiples of ~v: if s, t ∈ R are unequal then s~v 6= t~v, since s~v − t~v = (s − t)~v is
non-~0 as any non-0 component of ~v, when rescaled by the non-0 factor s− t, will
give a non-0 value.

Now apply Lemma 3.7 to conclude that a solution set

{~p+ ~h | ~h solves the associated homogeneous system }

is either empty (if there is no particular solution ~p), or has one element (if there
is a ~p and the homogeneous system has the unique solution ~0), or is infinite (if
there is a ~p and the homogeneous system has a non-~0 solution, and thus by the
prior paragraph has infinitely many solutions). QED

This table summarizes the factors affecting the size of a general solution.

number of solutions of the
homogeneous system

particular
solution
exists?

one infinitely many

yes unique
solution

infinitely many
solutions

no no
solutions

no
solutions

The dimension on the top of the table is the simpler one. When we perform
Gauss’s Method on a linear system, ignoring the constants on the right side and
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so paying attention only to the coefficients on the left-hand side, we either end
with every variable leading some row or else we find some variable that does not
lead a row, that is, we find some variable that is free. (We formalize “ignoring
the constants on the right” by considering the associated homogeneous system.)

A notable special case is systems having the same number of equations as
unknowns. Such a system will have a solution, and that solution will be unique,
if and only if it reduces to an echelon form system where every variable leads its
row (since there are the same number of variables as rows), which will happen if
and only if the associated homogeneous system has a unique solution.

3.11 Definition A square matrix is nonsingular if it is the matrix of coefficients
of a homogeneous system with a unique solution. It is singular otherwise, that
is, if it is the matrix of coefficients of a homogeneous system with infinitely many
solutions.

3.12 Example The first of these matrices is nonsingular while the second is
singular (

1 2

3 4

) (
1 2

3 6

)
because the first of these homogeneous systems has a unique solution while the
second has infinitely many solutions.

x+ 2y= 0

3x+ 4y= 0

x+ 2y= 0

3x+ 6y= 0

We have made the distinction in the definition because a system with the same
number of equations as variables behaves in one of two ways, depending on
whether its matrix of coefficients is nonsingular or singular. Where the matrix
of coefficients is nonsingular the system has a unique solution for any constants
on the right side: for instance, Gauss’s Method shows that this system

x+ 2y= a

3x+ 4y= b

has the unique solution x = b−2a and y = (3a−b)/2. On the other hand, where
the matrix of coefficients is singular the system never has a unique solution— it
has either no solutions or else has infinitely many, as with these.

x+ 2y= 1

3x+ 6y= 2

x+ 2y= 1

3x+ 6y= 3

The definition uses the word ‘singular’ because it means “departing from
general expectation.” People often, naively, expect that systems with the same
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number of variables as equations will have a unique solution. Thus, we can think
of the word as connoting “troublesome,” or at least “not ideal.” (That ‘singular’
applies to those systems that never have exactly one solution is ironic, but it is
the standard term.)

3.13 Example The systems from Example 3.3, Example 3.4, and Example 3.8
each have an associated homogeneous system with a unique solution. Thus these
matrices are nonsingular.

(
3 4

2 −1

) 3 2 1

6 −4 0

0 1 1


1 2 −1

2 4 0

0 1 −3


The Chemistry problem from Example 3.5 is a homogeneous system with more
than one solution so its matrix is singular.

7 0 −7 0

8 1 −5 −2

0 1 −3 0

0 3 −6 −1


The table above has two dimensions. We have considered the one on top: we

can tell into which column a given linear system goes solely by considering the
system’s left-hand side; the constants on the right-hand side play no role in this.

The table’s other dimension, determining whether a particular solution exists,
is tougher. Consider these two systems with the same left side but different
right sides.

3x+ 2y= 5

3x+ 2y= 5

3x+ 2y= 5

3x+ 2y= 4

The first has a solution while the second does not, so here the constants on the
right side decide if the system has a solution. We could conjecture that the left
side of a linear system determines the number of solutions while the right side
determines if solutions exist but that guess is not correct. Compare these two,
with the same right sides but different left sides.

3x+ 2y= 5

4x+ 2y= 4

3x+ 2y= 5

3x+ 2y= 4

The first has a solution but the second does not. Thus the constants on the
right side of a system don’t alone determine whether a solution exists. Rather,
that depends on some interaction between the left and right.
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For some intuition about that interaction, consider this system with one of
the coefficients left unspecified, as the variable c.

x+ 2y+ 3z= 1

x+ y+ z= 1

cx+ 3y+ 4z= 0

If c = 2 then this system has no solution because the left-hand side has the
third row as the sum of the first two, while the right-hand does not. If c 6= 2
then this system has a unique solution (try it with c = 1). For a system to
have a solution, if one row of the matrix of coefficients on the left is a linear
combination of other rows then on the right the constant from that row must be
the same combination of constants from the same rows.

More intuition about the interaction comes from studying linear combinations.
That will be our focus in the second chapter, after we finish the study of Gauss’s
Method itself in the rest of this chapter.

Exercises
X 3.14 Solve each system. Express the solution set using vectors. Identify the particular

solution and the solution set of the homogeneous system. (These systems also
appear in Exercise 18.)

(a) 3x + 6y = 18

x + 2y = 6

(b) x + y = 1

x − y = −1

(c) x1 + x3 = 4

x1 − x2 + 2x3 = 5

4x1 − x2 + 5x3 = 17

(d) 2a + b − c = 2

2a + c = 3

a − b = 0

(e) x + 2y − z = 3

2x + y +w = 4

x − y + z +w = 1

(f) x + z +w = 4

2x + y −w = 2

3x + y + z = 7

3.15 Solve each system, giving the solution set in vector notation. Identify the
particular solution and the solution of the homogeneous system.

(a) 2x + y − z = 1

4x − y = 3

(b) x − z = 1

y + 2z −w = 3

x + 2y + 3z −w = 7

(c) x − y + z = 0

y +w = 0

3x − 2y + 3z +w = 0

−y −w = 0

(d) a + 2b + 3c + d − e = 1

3a − b + c + d + e = 3

X 3.16 For the system
2x − y − w = 3

y + z + 2w = 2

x − 2y − z = −1

which of these can be used as the particular solution part of some general solu-
tion?

(a)


0

−3

5

0

 (b)


2

1

1

0

 (c)


−1

−4

8

−1


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X 3.17 Lemma 3.7 says that we can use any particular solution for ~p. Find, if possible,
a general solution to this system

x − y +w = 4

2x + 3y − z = 0

y + z +w = 4

that uses the given vector as its particular solution.

(a)


0

0

0

4

 (b)


−5

1

−7

10

 (c)


2

−1

1

1


3.18 One is nonsingular while the other is singular. Which is which?

(a)
(
1 3

4 −12

)
(b)

(
1 3

4 12

)
X 3.19 Singular or nonsingular?

(a)
(
1 2

1 3

)
(b)

(
1 2

−3 −6

)
(c)

(
1 2 1

1 3 1

)
(Careful!)

(d)

1 2 1

1 1 3

3 4 7

 (e)

 2 2 1

1 0 5

−1 1 4


X 3.20 Is the given vector in the set generated by the given set?

(a)
(
2

3

)
, {

(
1

4

)
,

(
1

5

)
}

(b)

−1

0

1

 , {
21
0

 ,
10
1

 }

(c)

13
0

 , {
10
4

 ,
21
5

 ,
33
0

 ,
42
1

 }

(d)


1

0

1

1

 , {

2

1

0

1

 ,

3

0

0

2

 }

3.21 Prove that any linear system with a nonsingular matrix of coefficients has a
solution, and that the solution is unique.

3.22 In the proof of Lemma 3.6, what happens if there are no non-0 = 0 equations?
X 3.23 Prove that if ~s and ~t satisfy a homogeneous system then so do these vec-

tors.
(a) ~s+~t (b) 3~s (c) k~s+m~t for k,m ∈ R

What’s wrong with this argument: “These three show that if a homogeneous system
has one solution then it has many solutions—any multiple of a solution is another
solution, and any sum of solutions is a solution also— so there are no homogeneous
systems with exactly one solution.”?

3.24 Prove that if a system with only rational coefficients and constants has a
solution then it has at least one all-rational solution. Must it have infinitely many?
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II Linear Geometry

If you have seen the elements of vectors then this section is an optional
review. However, later work will refer to this material so if this is not a
review then it is not optional.

In the first section we had to do a bit of work to show that there are only
three types of solution sets— singleton, empty, and infinite. But this is easy to
see geometrically in the case of systems with two equations and two unknowns.
Draw each two-unknowns equation as a line in the plane, and then the two lines
could have a unique intersection, be parallel, or be the same line.

Unique solution

3x + 2y = 7

x − y = −1

No solutions

3x + 2y = 7

3x + 2y = 4

Infinitely many
solutions

3x + 2y = 7

6x + 4y = 14

These pictures aren’t a short way to prove the results from the prior section,
because those results apply to linear systems of any size. But they do broaden
our understanding of those results.

This section develops what we need to express our results geometrically. In
particular, while the two-dimensional case is familiar, to extend to systems with
more than two unknowns we shall need some higher-dimensional geometry.

II.1 Vectors in Space

“Higher-dimensional geometry” sounds exotic. It is exotic— interesting and
eye-opening. But it isn’t distant or unreachable.

We begin by defining one-dimensional space to be R. To see that the definition
is reasonable, picture a one-dimensional space

and pick a point to label 0 and another to label 1.

0 1

Now, with a scale and a direction, we have a correspondence with R. For instance,
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to find the point matching +2.17, start at 0 and head in the direction of 1, and
go 2.17 times as far.

The basic idea here, combining magnitude with direction, is the key to
extending to higher dimensions.

An object comprised of a magnitude and a direction is a vector (we use the
same word as in the prior section because we shall show below how to describe
such an object with a column vector). We can draw a vector as having some
length and pointing in some direction.

There is a subtlety involved in the definition of a vector as consisting of a
magnitude and a direction—these

are equal, even though they start in different places They are equal because they
have equal lengths and equal directions. Again: those vectors are not just alike,
they are equal.

How can things that are in different places be equal? Think of a vector as
representing a displacement (the word ‘vector’ is Latin for “carrier” or “traveler”).
These two squares undergo displacements that are equal despite that they start
in different places.

When we want to emphasize this property vectors have of not being anchored
we refer to them as free vectors. Thus, these free vectors are equal, as each is a
displacement of one over and two up.

More generally, vectors in the plane are the same if and only if they have the
same change in first components and the same change in second components: the
vector extending from (a1, a2) to (b1, b2) equals the vector from (c1, c2) to
(d1, d2) if and only if b1 − a1 = d1 − c1 and b2 − a2 = d2 − c2.

Saying ‘the vector that, were it to start at (a1, a2), would extend to (b1, b2)’
would be unwieldy. We instead describe that vector as(

b1 − a1
b2 − a2

)
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so that we represent the ‘one over and two up’ arrows shown above in this way.(
1

2

)

We often draw the arrow as starting at the origin, and we then say it is in the
canonical position (or natural position or standard position). When

~v =

(
v1
v2

)

is in canonical position then it extends from the origin to the endpoint (v1, v2).
We will typically say “the point (

1

2

)
”

rather than “the endpoint of the canonical position of” that vector. Thus, we
will call each of these R2.

{(x1, x2) | x1, x2 ∈ R } {

(
x1
x2

)
| x1, x2 ∈ R }

In the prior section we defined vectors and vector operations with an algebraic
motivation;

r ·

(
v1
v2

)
=

(
rv1
rv2

) (
v1
v2

)
+

(
w1
w2

)
=

(
v1 +w1
v2 +w2

)

we can now understand those operations geometrically. For instance, if ~v
represents a displacement then 3~v represents a displacement in the same direction
but three times as far and −1~v represents a displacement of the same distance
as ~v but in the opposite direction.

~v

−~v

3~v

And, where ~v and ~w represent displacements, ~v+~w represents those displacements
combined.

~v

~w

~v+ ~w
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The long arrow is the combined displacement in this sense: imagine that you are
walking on a ship’s deck. Suppose that in one minute the ship’s motion gives it
a displacement relative to the sea of ~v, and in the same minute your walking
gives you a displacement relative to the ship’s deck of ~w. Then ~v+ ~w is your
displacement relative to the sea.

Another way to understand the vector sum is with the parallelogram rule.
Draw the parallelogram formed by the vectors ~v and ~w. Then the sum ~v + ~w

extends along the diagonal to the far corner.

~v+ ~w

~v

~w

The above drawings show how vectors and vector operations behave in R2.
We can extend to R3, or to even higher-dimensional spaces where we have no
pictures, with the obvious generalization: the free vector that, if it starts at
(a1, . . . , an), ends at (b1, . . . , bn), is represented by this column.b1 − a1...

bn − an


Vectors are equal if they have the same representation. We aren’t too careful
about distinguishing between a point and the vector whose canonical representa-
tion ends at that point.

Rn = {

v1...
vn

 | v1, . . . , vn ∈ R }

And, we do addition and scalar multiplication component-wise.
Having considered points, we next turn to lines. In R2, the line through

(1, 2) and (3, 1) is comprised of (the endpoints of) the vectors in this set.

{

(
1

2

)
+ t

(
2

−1

)
| t ∈ R }

That description expresses this picture.(
2

−1

)
=

(
3

1

)
−

(
1

2

)
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The vector that in the description is associated with the parameter t(
2

−1

)
=

(
3

1

)
−

(
1

2

)

is the one shown in the picture as having its whole body in the line— it is a
direction vector for the line. Note that points on the line to the left of x = 1
are described using negative values of t.

In R3, the line through (1, 2, 1) and (2, 3, 2) is the set of (endpoints of) vectors
of this form

{

12
1

+ t ·

11
1

 | t ∈ R }

and lines in even higher-dimensional spaces work in the same way.
In R3, a line uses one parameter so that a particle on that line would be

free to move back and forth in one dimension. A plane involves two parameters.
For example, the plane through the points (1, 0, 5), (2, 1,−3), and (−2, 4, 0.5)

consists of (endpoints of) the vectors in this set.

{

10
5

+ t

 1

1

−8

+ s

 −3

4

−4.5

 | t, s ∈ R }

The column vectors associated with the parameters come from these calculations. 1

1

−8

 =

 2

1

−3

−

10
5


 −3

4

−4.5

 =

−2

4

0.5

−

10
5


As with the line, note that we describe some points in this plane with negative
t’s or negative s’s or both.

Calculus books often describe a plane by using a single linear equation.

P = {

xy
z

 | 2x+ y+ z = 4 }



Section II. Linear Geometry 39

To translate from this to the vector description, think of this as a one-equation
linear system and parametrize: x = 2− y/2− z/2.

P = {

20
0

+ y ·

−1/2

1

0

+ z ·

−1/2

0

1

 | y, z ∈ R }

Shown in grey are the vectors associated with y and z, offset from the origin
by 2 units along the x-axis, so that their entire body lies in the plane. Thus the
vector sum of the two, shown in black, has its entire body in the plane along
with the rest of the parallelogram.

Generalizing, a set of the form {~p+ t1~v1 + t2~v2 + · · ·+ tk~vk | t1, . . . , tk ∈ R }

where ~v1, . . . ,~vk ∈ Rn and k 6 n is a k-dimensional linear surface (or k-flat).
For example, in R4

{


2

π

3

−0.5

+ t


1

0

0

0

 | t ∈ R }

is a line,

{


0

0

0

0

+ t


1

1

0

−1

+ s


2

0

1

0

 | t, s ∈ R }

is a plane, and

{


3

1

−2

0.5

+ r


0

0

0

−1

+ s


1

0

1

0

+ t


2

0

1

0

 | r, s, t ∈ R }

is a three-dimensional linear surface. Again, the intuition is that a line permits
motion in one direction, a plane permits motion in combinations of two directions,
etc. When the dimension of the linear surface is one less than the dimension of
the space, that is, when in Rn we have an (n − 1)-flat, the surface is called a
hyperplane.

A description of a linear surface can be misleading about the dimension. For
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example, this

L = {


1

0

−1

−2

+ t


1

1

0

−1

+ s


2

2

0

−2

 | t, s ∈ R }

is a degenerate plane because it is actually a line, since the vectors are multiples
of each other and we can omit one.

L = {


1

0

−1

−2

+ r


1

1

0

−1

 | r ∈ R }

We shall see in the Linear Independence section of Chapter Two what relation-
ships among vectors causes the linear surface they generate to be degenerate.

We now can restate in geometric terms our conclusions from earlier. First,
the solution set of a linear system with n unknowns is a linear surface in Rn.
Specifically, it is a k-dimensional linear surface, where k is the number of free
variables in an echelon form version of the system. For instance, in the single
equation case the solution set is an n− 1-dimensional hyperplane in Rn (where
n > 0). Second, the solution set of a homogeneous linear system is a linear
surface passing through the origin. Finally, we can view the general solution
set of any linear system as being the solution set of its associated homogeneous
system offset from the origin by a vector, namely by any particular solution.

Exercises

X 1.1 Find the canonical name for each vector.
(a) the vector from (2, 1) to (4, 2) in R2

(b) the vector from (3, 3) to (2, 5) in R2

(c) the vector from (1, 0, 6) to (5, 0, 3) in R3

(d) the vector from (6, 8, 8) to (6, 8, 8) in R3

X 1.2 Decide if the two vectors are equal.
(a) the vector from (5, 3) to (6, 2) and the vector from (1,−2) to (1, 1)

(b) the vector from (2, 1, 1) to (3, 0, 4) and the vector from (5, 1, 4) to (6, 0, 7)

X 1.3 Does (1, 0, 2, 1) lie on the line through (−2, 1, 1, 0) and (5, 10,−1, 4)?
X 1.4 (a) Describe the plane through (1, 1, 5,−1), (2, 2, 2, 0), and (3, 1, 0, 4).

(b) Is the origin in that plane?
1.5 Describe the plane that contains this point and line.20

3

 {

−1

0

−4

+

11
2

 t | t ∈ R }
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X 1.6 Intersect these planes.

{

11
1

 t+
01
3

 s | t, s ∈ R } {

11
0

+

03
0

k+
20
4

m | k,m ∈ R }

X 1.7 Intersect each pair, if possible.

(a) {

11
2

+ t

01
1

 | t ∈ R }, {

 1

3

−2

+ s

01
2

 | s ∈ R }

(b) {

20
1

+ t

 1

1

−1

 | t ∈ R }, {s

01
2

+w

04
1

 | s,w ∈ R }

1.8 When a plane does not pass through the origin, performing operations on vectors
whose bodies lie in it is more complicated than when the plane passes through the
origin. Consider the picture in this subsection of the plane

{

20
0

+

−0.5

1

0

y+

−0.5

0

1

 z | y, z ∈ R }

and the three vectors with endpoints (2, 0, 0), (1.5, 1, 0), and (1.5, 0, 1).
(a) Redraw the picture, including the vector in the plane that is twice as long
as the one with endpoint (1.5, 1, 0). The endpoint of your vector is not (3, 2, 0);
what is it?
(b) Redraw the picture, including the parallelogram in the plane that shows the
sum of the vectors ending at (1.5, 0, 1) and (1.5, 1, 0). The endpoint of the sum,
on the diagonal, is not (3, 1, 1); what is it?

1.9 Show that the line segments (a1, a2)(b1, b2) and (c1, c2)(d1, d2) have the same
lengths and slopes if b1 − a1 = d1 − c1 and b2 − a2 = d2 − c2. Is that only if?

1.10 How should we define R0?
? X 1.11 [Math. Mag., Jan. 1957] A person traveling eastward at a rate of 3 miles per

hour finds that the wind appears to blow directly from the north. On doubling his
speed it appears to come from the north east. What was the wind’s velocity?

1.12 Euclid describes a plane as “a surface which lies evenly with the straight lines
on itself”. Commentators such as Heron have interpreted this to mean, “(A plane
surface is) such that, if a straight line pass through two points on it, the line
coincides wholly with it at every spot, all ways”. (Translations from [Heath], pp.
171-172.) Do planes, as described in this section, have that property? Does this
description adequately define planes?

II.2 Length and Angle Measures

We’ve translated the first section’s results about solution sets into geometric
terms, to better understand those sets. But we must be careful not to be misled
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by our own terms— labeling subsets of Rk of the forms {~p+ t~v | t ∈ R } and
{~p+ t~v+ s~w | t, s ∈ R } as ‘lines’ and ‘planes’ doesn’t make them act like the
lines and planes of our past experience. Rather, we must ensure that the names
suit the sets. While we can’t prove that the sets satisfy our intuition—we
can’t prove anything about intuition— in this subsection we’ll observe that a
result familiar from R2 and R3, when generalized to arbitrary Rn, supports the
idea that a line is straight and a plane is flat. Specifically, we’ll see how to do
Euclidean geometry in a ‘plane’ by giving a definition of the angle between two
Rn vectors, in the plane that they generate.

2.1 Definition The length of a vector ~v ∈ Rn is the square root of the sum of the
squares of its components.

|~v | =
√
v21 + · · ·+ v2n

2.2 Remark This is a natural generalization of the Pythagorean Theorem. A
classic motivating discussion is in [Polya].

For any nonzero ~v, the vector ~v/|~v| has length one. We say that the second
normalizes ~v to length one.

We can use that to get a formula for the angle between two vectors. Consider
two vectors in R3 where neither is a multiple of the other

~v
~u

(the special case of multiples will turn out below not to be an exception). They
determine a two-dimensional plane— for instance, put them in canonical position
and take the plane formed by the origin and the endpoints. In that plane consider
the triangle with sides ~u, ~v, and ~u−~v.

Apply the Law of Cosines: |~u−~v |2 = |~u |2 + |~v |2 − 2 |~u | |~v | cos θ where θ is the
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angle between the vectors. The left side gives

(u1 − v1)
2 + (u2 − v2)

2 + (u3 − v3)
2

= (u21 − 2u1v1 + v
2
1) + (u22 − 2u2v2 + v

2
2) + (u23 − 2u3v3 + v

2
3)

while the right side gives this.

(u21 + u
2
2 + u

2
3) + (v21 + v

2
2 + v

2
3) − 2 |~u | |~v | cos θ

Canceling squares u21, . . . , v
2
3 and dividing by 2 gives a formula for the angle.

θ = arccos(
u1v1 + u2v2 + u3v3

|~u | |~v |
)

In higher dimensions we cannot draw pictures as above but we can instead
make the argument analytically. First, the form of the numerator is clear; it
comes from the middle terms of (ui − vi)2.

2.3 Definition The dot product (or inner product or scalar product) of two
n-component real vectors is the linear combination of their components.

~u •~v = u1v1 + u2v2 + · · ·+ unvn

Note that the dot product of two vectors is a real number, not a vector, and
that the dot product is only defined if the two vectors have the same number
of components. Note also that dot product is related to length: ~u • ~u =

u1u1 + · · ·+ unun = |~u |2.

2.4 Remark Some authors require that the first vector be a row vector and that
the second vector be a column vector. We shall not be that strict and will allow
the dot product operation between two column vectors.

Still reasoning analytically but guided by the pictures, we use the next
theorem to argue that the triangle formed by the line segments making the
bodies of ~u, ~v, and ~u+~v in Rn lies in the planar subset of Rn generated by ~u

and ~v (see the figure below).

2.5 Theorem (Triangle Inequality) For any ~u,~v ∈ Rn,

|~u+~v | 6 |~u |+ |~v |

with equality if and only if one of the vectors is a nonnegative scalar multiple of
the other one.

This is the source of the familiar saying, “The shortest distance between two
points is in a straight line.”



44 Chapter One. Linear Systems

~u

~v~u+~v

start

finish

Proof (We’ll use some algebraic properties of dot product that we have not yet
checked, for instance that ~u • (~a+ ~b) = ~u • ~a+ ~u • ~b and that ~u •~v = ~v • ~u. See
Exercise 18.) Since all the numbers are positive, the inequality holds if and only
if its square holds.

|~u+~v |2 6 ( |~u |+ |~v | )2

( ~u+~v ) • ( ~u+~v ) 6 |~u |2 + 2 |~u | |~v |+ |~v |2

~u • ~u+ ~u •~v+~v • ~u+~v •~v 6 ~u • ~u+ 2 |~u | |~v |+~v •~v

2 ~u •~v 6 2 |~u | |~v |

That, in turn, holds if and only if the relationship obtained by multiplying both
sides by the nonnegative numbers |~u | and |~v |

2 ( |~v | ~u ) • ( |~u |~v ) 6 2 |~u |2 |~v |2

and rewriting
0 6 |~u |2 |~v |2 − 2 ( |~v | ~u ) • ( |~u |~v ) + |~u |2 |~v |2

is true. But factoring shows that it is true

0 6 ( |~u |~v− |~v | ~u ) • ( |~u |~v− |~v | ~u )

since it only says that the square of the length of the vector |~u |~v− |~v | ~u is not
negative. As for equality, it holds when, and only when, |~u |~v− |~v | ~u is ~0. The
check that |~u |~v = |~v | ~u if and only if one vector is a nonnegative real scalar
multiple of the other is easy. QED

This result supports the intuition that even in higher-dimensional spaces,
lines are straight and planes are flat. We can easily check from the definition
that linear surfaces have the property that for any two points in that surface,
the line segment between them is contained in that surface. But if the linear
surface were not flat then that would allow for a shortcut.

P Q

Because the Triangle Inequality says that in any Rn the shortest cut between
two endpoints is simply the line segment connecting them, linear surfaces have
no bends.



Section II. Linear Geometry 45

Back to the definition of angle measure. The heart of the Triangle Inequality’s
proof is the ~u •~v 6 |~u | |~v | line. We might wonder if some pairs of vectors satisfy
the inequality in this way: while ~u • ~v is a large number, with absolute value
bigger than the right-hand side, it is a negative large number. The next result
says that does not happen.

2.6 Corollary (Cauchy-Schwarz Inequality) For any ~u,~v ∈ Rn,

| ~u •~v | 6 | ~u | |~v |

with equality if and only if one vector is a scalar multiple of the other.

Proof The Triangle Inequality’s proof shows that ~u • ~v 6 |~u | |~v | so if ~u • ~v is
positive or zero then we are done. If ~u •~v is negative then this holds.

| ~u •~v | = −( ~u •~v ) = (−~u ) •~v 6 |−~u | |~v | = |~u | |~v |

The equality condition is Exercise 19. QED

The Cauchy-Schwarz inequality assures us that the next definition makes
sense because the fraction has absolute value less than or equal to one.

2.7 Definition The angle between two nonzero vectors ~u,~v ∈ Rn is

θ = arccos(
~u •~v

|~u | |~v |
)

(if either is the zero vector, we take the angle to be right).

2.8 Corollary Vectors from Rn are orthogonal, that is, perpendicular, if and only
if their dot product is zero. They are parallel if and only if their dot product
equals the product of their lengths.

2.9 Example These vectors are orthogonal.

(
1

−1

)
•

(
1

1

)
= 0

We’ve drawn the arrows away from canonical position but nevertheless the
vectors are orthogonal.

2.10 Example The R3 angle formula given at the start of this subsection is a
special case of the definition. Between these two
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03
2



11
0


the angle is

arccos(
(1)(0) + (1)(3) + (0)(2)√
12 + 12 + 02

√
02 + 32 + 22

) = arccos(
3√
2
√
13

)

approximately 0.94 radians. Notice that these vectors are not orthogonal. Al-
though the yz-plane may appear to be perpendicular to the xy-plane, in fact
the two planes are that way only in the weak sense that there are vectors in each
orthogonal to all vectors in the other. Not every vector in each is orthogonal to
all vectors in the other.

Exercises

X 2.11 Find the length of each vector.

(a)
(
3

1

)
(b)

(
−1

2

)
(c)

41
1

 (d)

00
0

 (e)


1

−1

1

0


X 2.12 Find the angle between each two, if it is defined.

(a)
(
1

2

)
,

(
1

4

)
(b)

12
0

 ,
04
1

 (c)
(
1

2

)
,

 1

4

−1


X 2.13 [Ohanian] During maneuvers preceding the Battle of Jutland, the British battle

cruiser Lion moved as follows (in nautical miles): 1.2 miles north, 6.1 miles 38
degrees east of south, 4.0 miles at 89 degrees east of north, and 6.5 miles at 31
degrees east of north. Find the distance between starting and ending positions.
(Ignore the earth’s curvature.)
2.14 Find k so that these two vectors are perpendicular.(

k

1

) (
4

3

)
2.15 Describe the set of vectors in R3 orthogonal to this one. 1

3

−1


X 2.16 (a) Find the angle between the diagonal of the unit square in R2 and one of

the axes.
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(b) Find the angle between the diagonal of the unit cube in R3 and one of the
axes.
(c) Find the angle between the diagonal of the unit cube in Rn and one of the
axes.
(d) What is the limit, as n goes to ∞, of the angle between the diagonal of the
unit cube in Rn and one of the axes?

2.17 Is any vector perpendicular to itself?
X 2.18 Describe the algebraic properties of dot product.

(a) Is it right-distributive over addition: (~u+~v) • ~w = ~u • ~w+~v • ~w?
(b) Is it left-distributive (over addition)?
(c) Does it commute?
(d) Associate?
(e) How does it interact with scalar multiplication?

As always, you must back any assertion with either a proof or an example.
2.19 Verify the equality condition in Corollary 2.6, the Cauchy-Schwarz Inequal-
ity.
(a) Show that if ~u is a negative scalar multiple of ~v then ~u •~v and ~v • ~u are less
than or equal to zero.
(b) Show that |~u •~v| = |~u | |~v | if and only if one vector is a scalar multiple of the
other.

2.20 Suppose that ~u •~v = ~u • ~w and ~u 6= ~0. Must ~v = ~w?
X 2.21 Does any vector have length zero except a zero vector? (If “yes”, produce an

example. If “no”, prove it.)
X 2.22 Find the midpoint of the line segment connecting (x1, y1) with (x2, y2) in R2.

Generalize to Rn.
2.23 Show that if ~v 6= ~0 then ~v/|~v | has length one. What if ~v = ~0?
2.24 Show that if r > 0 then r~v is r times as long as ~v. What if r < 0?

X 2.25 A vector ~v ∈ Rn of length one is a unit vector. Show that the dot product
of two unit vectors has absolute value less than or equal to one. Can ‘less than’
happen? Can ‘equal to’?

2.26 Prove that |~u+~v |2 + |~u−~v |2 = 2|~u |2 + 2|~v |2.

2.27 Show that if ~x • ~y = 0 for every ~y then ~x = ~0.
2.28 Is |~u1 + · · · + ~un| 6 |~u1| + · · · + |~un|? If it is true then it would generalize the
Triangle Inequality.

2.29 What is the ratio between the sides in the Cauchy-Schwarz inequality?
2.30 Why is the zero vector defined to be perpendicular to every vector?
2.31 Describe the angle between two vectors in R1.
2.32 Give a simple necessary and sufficient condition to determine whether the angle
between two vectors is acute, right, or obtuse.

X 2.33 Generalize to Rn the converse of the Pythagorean Theorem, that if ~u and ~v are
perpendicular then |~u+~v |2 = |~u |2 + |~v |2.

2.34 Show that |~u | = |~v | if and only if ~u+~v and ~u−~v are perpendicular. Give an
example in R2.
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2.35 Show that if a vector is perpendicular to each of two others then it is perpen-
dicular to each vector in the plane they generate. (Remark. They could generate a
degenerate plane—a line or a point—but the statement remains true.)

2.36 Prove that, where ~u,~v ∈ Rn are nonzero vectors, the vector
~u

|~u |
+

~v

|~v |

bisects the angle between them. Illustrate in R2.
2.37 Verify that the definition of angle is dimensionally correct: (1) if k > 0 then the
cosine of the angle between k~u and ~v equals the cosine of the angle between ~u and
~v, and (2) if k < 0 then the cosine of the angle between k~u and ~v is the negative of
the cosine of the angle between ~u and ~v.

X 2.38 Show that the inner product operation is linear : for ~u,~v, ~w ∈ Rn and k,m ∈ R,
~u • (k~v+m~w) = k(~u •~v) +m(~u • ~w).

X 2.39 The geometric mean of two positive reals x, y is
√
xy. It is analogous to the

arithmetic mean (x+ y)/2. Use the Cauchy-Schwarz inequality to show that the
geometric mean of any x, y ∈ R is less than or equal to the arithmetic mean.

? 2.40 [Cleary] Astrologers claim to be able to recognize trends in personality and
fortune that depend on an individual’s birthday by somehow incorporating where
the stars were 2000 years ago, during the Hellenistic period. Suppose that instead
of star-gazers coming up with stuff, math teachers who like linear algebra (we’ll
call them vectologers) had come up with a similar system as follows: Consider your
birthday as a row vector (month day). For instance, I was born on July 12 so my
vector would be (7 12). Vectologers have made the rule that how well individuals
get along with each other depends on the angle between vectors. The smaller the
angle, the more harmonious the relationship.
(a) Compute the angle between your vector and mine, expressing the answer in
radians.
(b) Would you get along better with me, or with a professor born on September 19?
(c) For maximum harmony in a relationship, when should the other person be
born?
(d) Is there a person with whom you have a “worst case” relationship, i.e., your
vector and theirs are orthogonal? If so, what are the birthdate(s) for such people?
If not, explain why not.

? 2.41 [Am. Math. Mon., Feb. 1933] A ship is sailing with speed and direction ~v1; the
wind blows apparently (judging by the vane on the mast) in the direction of a
vector ~a; on changing the direction and speed of the ship from ~v1 to ~v2 the apparent
wind is in the direction of a vector ~b.

Find the vector velocity of the wind.
2.42 Verify the Cauchy-Schwarz inequality by first proving Lagrange’s identity:( ∑

16j6n

ajbj

)2
=

( ∑
16j6n

a2j

)( ∑
16j6n

b2j

)
−

∑
16k<j6n

(akbj − ajbk)
2

and then noting that the final term is positive. (Recall the meaning∑
16j6n

ajbj = a1b1 + a2b2 + · · ·+ anbn
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and ∑
16j6n

aj
2 = a1

2 + a2
2 + · · ·+ an2

of the Σ notation.) This result is an improvement over Cauchy-Schwarz because it
gives a formula for the difference between the two sides. Interpret that difference
in R2.
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III Reduced Echelon Form

After developing the mechanics of Gauss’s Method, we observed that it can be
done in more than one way. For example, from this matrix(

2 2

4 3

)
we could derive any of these three echelon form matrices.(

2 2

0 −1

) (
1 1

0 −1

) (
2 0

0 −1

)
The first results from −2ρ1+ ρ2. The second comes from following (1/2)ρ1 with
−4ρ1 + ρ2. The third comes from −2ρ1 + ρ2 followed by 2ρ2 + ρ1 (after the
first row combination the matrix is already in echelon form so the second one is
extra work but it is nonetheless a legal row operation).

The fact that echelon form is not unique raises questions. Will any two
echelon form versions of a linear system have the same number of free variables?
If yes, will the two have exactly the same free variables? In this section we will
give a way to decide if one linear system can be derived from another by row
operations. The answers to both questions, both “yes,” will follow from this.

III.1 Gauss-Jordan Reduction

Here is an extension of Gauss’s Method that has some advantages.

1.1 Example To solve
x+ y− 2z=−2

y+ 3z= 7

x − z=−1

we can start as usual by reducing it to echelon form.

−ρ1+ρ3−→

1 1 −2 −2

0 1 3 7

0 −1 1 1

 ρ2+ρ3−→

1 1 −2 −2

0 1 3 7

0 0 4 8


We can keep going to a second stage by making the leading entries into 1’s

(1/4)ρ3−→

1 1 −2 −2

0 1 3 7

0 0 1 2


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and then to a third stage that uses the leading entries to eliminate all of the
other entries in each column by combining upwards.

−3ρ3+ρ2−→
2ρ3+ρ1

1 1 0 2

0 1 0 1

0 0 1 2

 −ρ2+ρ1−→

1 0 0 1

0 1 0 1

0 0 1 2


The answer is x = 1, y = 1, and z = 2.

Using one entry to clear out the rest of a column is pivoting on that entry.
Note that the row combination operations in the first stage move left to right,

from column one to column three, while the combination operations in the third
stage move right to left.

1.2 Example The middle stage operations that turn the leading entries into 1’s
don’t interact, so we can combine multiple ones into a single step.(

2 1 7

4 −2 6

)
−2ρ1+ρ2−→

(
2 1 7

0 −4 −8

)
(1/2)ρ1−→
(−1/4)ρ2

(
1 1/2 7/2

0 1 2

)
−(1/2)ρ2+ρ1−→

(
1 0 5/2

0 1 2

)

The answer is x = 5/2 and y = 2.

This extension of Gauss’s Method is the Gauss-Jordan Method or Gauss-
Jordan reduction.

1.3 Definition A matrix or linear system is in reduced echelon form if, in addition
to being in echelon form, each leading entry is a 1 and is the only nonzero entry
in its column.

The cost of using Gauss-Jordan reduction to solve a system is the additional
arithmetic. The benefit is that we can just read off the solution set description.

More specifically, in any echelon form, reduced or not, we can read off when
the system has an empty solution set because there is a contradictory equation.
We can read off when the system has a one-element solution set because there is
no contradiction and every variable is the leading variable in some row. And,
we can read off when the system has an infinite solution set because there is no
contradiction and at least one variable is free.

However, in reduced echelon form we can read off not just the size of the
solution set but also its description. We have no trouble describing the solution
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set when it is empty, of course. Example 1.1 and 1.2 show how in a single
element solution set case the single element is in the column of constants. The
next example shows how to read the parametrization of an infinite solution set.

1.4 Example2 6 1 2 5

0 3 1 4 1

0 3 1 2 5

 −ρ2+ρ3−→

2 6 1 2 5

0 3 1 4 1

0 0 0 −2 4


(1/2)ρ1−→
(1/3)ρ2
−(1/2)ρ3

−(4/3)ρ3+ρ2−→
−ρ3+ρ1

−3ρ2+ρ1−→

1 0 −1/2 0 −9/2

0 1 1/3 0 3

0 0 0 1 −2


As a linear system this is

x1 − 1/2x3 =−9/2

x2 + 1/3x3 = 3

x4 = −2

so a solution set description is this.

S = {


x1
x2
x3
x4

 =


−9/2

3

0

−2

+


1/2

−1/3

1

0

 x3 | x3 ∈ R }

Thus echelon form isn’t some kind of one best form for systems. Other forms,
such as reduced echelon form, have advantages and disadvantages. Instead of
picturing linear systems (and the associated matrices) as things we operate
on, always directed toward the goal of echelon form, we can think of them as
interrelated when we can get from one to another by row operations. The rest
of this subsection develops this relationship.

1.5 Lemma Elementary row operations are reversible.

Proof For any matrix A, the effect of swapping rows is reversed by swapping
them back, multiplying a row by a nonzero k is undone by multiplying by 1/k,
and adding a multiple of row i to row j (with i 6= j) is undone by subtracting
the same multiple of row i from row j.

A
ρi↔ρj−→ ρj↔ρi−→ A A

kρi−→ (1/k)ρi−→ A A
kρi+ρj−→ −kρi+ρj−→ A

(We need the i 6= j condition; see Exercise 15.) QED
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Again, the point of view that we are developing, supported now by the lemma,
is that the term ‘reduces to’ is misleading: where A −→ B, we shouldn’t think
of B as after A or simpler than A. Instead we should think of the two matrices
as interrelated. Below is a picture. It shows the matrices from the start of this
section and their reduced echelon form version in a cluster, as inter-reducible.

(
1 0

0 1

)
(
2 2

4 3

)
(
2 0

0 −1

) (
1 1

0 −1

)
(
2 2

0 −1

)

We say that matrices that reduce to each other are equivalent with respect
to the relationship of row reducibility. The next result justifies this, using the
definition of an equivalence.∗

1.6 Lemma Between matrices, ‘reduces to’ is an equivalence relation.

Proof We must check the conditions (i) reflexivity, that any matrix reduces
to itself, (ii) symmetry, that if A reduces to B then B reduces to A, and
(iii) transitivity, that if A reduces to B and B reduces to C then A reduces to C.

Reflexivity is easy; any matrix reduces to itself in zero-many operations.
The relationship is symmetric by the prior lemma—if A reduces to B by

some row operations then also B reduces to A by reversing those operations.
For transitivity, suppose that A reduces to B and that B reduces to C.

Following the reduction steps from A→ · · · → B with those from B→ · · · → C

gives a reduction from A to C. QED

1.7 Definition Two matrices that are interreducible by elementary row operations
are row equivalent.

The diagram below shows the collection of all matrices as a box. Inside that
box each matrix lies in a class. Matrices are in the same class if and only if they
are interreducible. The classes are disjoint—no matrix is in two distinct classes.
We have partitioned the collection of matrices into row equivalence classes.†

. . .
A
B

∗ More information on equivalence relations is in the appendix.
† More information on partitions and class representatives is in the appendix.
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One of the classes is the cluster of interrelated matrices from the start of this
section pictured earlier, expanded to include all of the nonsingular 2×2 matrices.

The next subsection proves that the reduced echelon form of a matrix is
unique. Rephrased in terms of the row-equivalence relationship, we shall prove
that every matrix is row equivalent to one and only one reduced echelon form
matrix. In terms of the partition what we shall prove is: every equivalence class
contains one and only one reduced echelon form matrix. So each reduced echelon
form matrix serves as a representative of its class.

Exercises

X 1.8 Use Gauss-Jordan reduction to solve each system.
(a) x + y = 2

x − y = 0

(b) x − z = 4

2x + 2y = 1

(c) 3x − 2y = 1

6x + y = 1/2

(d) 2x − y = −1

x + 3y − z = 5

y + 2z = 5

X 1.9 Find the reduced echelon form of each matrix.

(a)
(
2 1

1 3

)
(b)

 1 3 1

2 0 4

−1 −3 −3

 (c)

1 0 3 1 2

1 4 2 1 5

3 4 8 1 2


(d)

0 1 3 2

0 0 5 6

1 5 1 5


X 1.10 Find each solution set by using Gauss-Jordan reduction and then reading off

the parametrization.
(a) 2x + y − z = 1

4x − y = 3

(b) x − z = 1

y + 2z −w = 3

x + 2y + 3z −w = 7

(c) x − y + z = 0

y +w = 0

3x − 2y + 3z +w = 0

−y −w = 0

(d) a + 2b + 3c + d − e = 1

3a − b + c + d + e = 3

1.11 Give two distinct echelon form versions of this matrix.2 1 1 3

6 4 1 2

1 5 1 5


X 1.12 List the reduced echelon forms possible for each size.

(a) 2×2 (b) 2×3 (c) 3×2 (d) 3×3
X 1.13 What results from applying Gauss-Jordan reduction to a nonsingular matrix?

1.14 [Cleary] Consider the following relationship on the set of 2×2 matrices: we say
that A is sum-what like B if the sum of all of the entries in A is the same as the
sum of all the entries in B. For instance, the zero matrix would be sum-what like
the matrix whose first row had two sevens, and whose second row had two negative
sevens. Prove or disprove that this is an equivalence relation on the set of 2×2
matrices.
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1.15 The proof of Lemma 1.5 contains a reference to the i 6= j condition on the row
combination operation.
(a) Write down a 2×2 matrix with nonzero entries, and show that the −1 · ρ1+ ρ1
operation is not reversed by 1 · ρ1 + ρ1.
(b) Expand the proof of that lemma to make explicit exactly where it uses the
i 6= j condition on combining.

1.16 [Cleary] Consider the set of students in a class. Which of the following re-
lationships are equivalence relations? Explain each answer in at least a sen-
tence.
(a) Two students x, y are related if x has taken at least as many math classes as y.
(b) Students x, y are related if they have names that start with the same letter.

1.17 Show that each of these is an equivalence on the set of 2×2 matrices. Describe
the equivalence classes.
(a) Two matrices are related if they have the same product down the diagonal,
that is, if the product of the entries in the upper left and lower right are equal.
(b) Two matrices are related if they both have at least one entry that is a 1, or if
neither does.

1.18 Show that each is not an equivalence on the set of 2×2 matrices.
(a) Two matrices A,B are related if a1,1 = −b1,1.
(b) Two matrices are related if the sum of their entries are within 5, that is, A is
related to B if |(a1,1 + · · ·+ a2,2) − (b1,1 + · · ·+ b2,2)| < 5.

III.2 The Linear Combination Lemma

We will close this chapter by proving that every matrix is row equivalent to one
and only one reduced echelon form matrix. The ideas here will reappear, and be
further developed, in the next chapter.

The crucial observation concerns how row operations act to transform one
matrix into another: they combine the rows linearly, that is, the new rows are
linear combinations of the old rows.

2.1 Example Consider this Gauss-Jordan reduction.(
2 1 0

1 3 5

)
−(1/2)ρ1+ρ2−→

(
2 1 0

0 5/2 5

)
(1/2)ρ1−→
(2/5)ρ2

(
1 1/2 0

0 1 2

)
−(1/2)ρ2+ρ1−→

(
1 0 −1

0 1 2

)
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Denoting those matrices A→ D→ G→ B and writing the rows of A as α1 and
α2, etc., we have this.(

α1
α2

)
−(1/2)ρ1+ρ2−→

(
δ1 = α1
δ2 = −(1/2)α1 + α2

)
(1/2)ρ1−→
(2/5)ρ2

(
γ1 = (1/2)α1
γ2 = −(1/5)α1 + (2/5)α2

)
−(1/2)ρ2+ρ1−→

(
β1 = (3/5)α1 − (1/5)α2
β2 = −(1/5)α1 + (2/5)α2

)

2.2 Example The fact that Gaussian operations combine rows linearly also holds
if there is a row swap. With this A, D, G, and B(

0 2

1 1

)
ρ1↔ρ2−→

(
1 1

0 2

)
(1/2)ρ2−→

(
1 1

0 1

)
−ρ2+ρ1−→

(
1 0

0 1

)

we get these linear relationships.(
~α1
~α2

)
ρ1↔ρ2−→

(
~δ1 = ~α2
~δ2 = ~α1

)
(1/2)ρ2−→

(
~γ1 = ~α2
~γ2 = (1/2)~α1

)
−ρ2+ρ1−→

(
~β1 = (−1/2)~α1 + 1 · ~α2
~β2 = (1/2)~α1

)

In summary, Gauss’s Method systematically finds a suitable sequence of
linear combinations of the rows.

2.3 Lemma (Linear Combination Lemma) A linear combination of linear combina-
tions is a linear combination.

Proof Given the set c1,1x1 + · · · + c1,nxn through cm,1x1 + · · · + cm,nxn of
linear combinations of the x’s, consider a combination of those

d1(c1,1x1 + · · ·+ c1,nxn) + · · ·+ dm(cm,1x1 + · · ·+ cm,nxn)

where the d’s are scalars along with the c’s. Distributing those d’s and regrouping
gives

= (d1c1,1 + · · ·+ dmcm,1)x1 + · · ·+ (d1c1,n + · · ·+ dmcm,n)xn

which is also a linear combination of the x’s. QED
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2.4 Corollary Where one matrix reduces to another, each row of the second is a
linear combination of the rows of the first.

Proof For any two interreducible matrices A and B there is some minimum
number of row operations that will take one to the other. We proceed by
induction on that number.

In the base step, that we can go from the first to the second using zero
reduction operations, the two matrices are equal. Then each row of B is trivially
a combination of A’s rows ~βi = 0 · ~α1 + · · ·+ 1 · ~αi + · · ·+ 0 · ~αm.

For the inductive step assume the inductive hypothesis: with k > 0, any
matrix that can be derived from A in k or fewer operations has rows that are
linear combinations of A’s rows. Consider a matrix B such that reducing A to B
requires k+ 1 operations. In that reduction there is a next-to-last matrix G, so
that A −→ · · · −→ G −→ B. The inductive hypothesis applies to this G because
it is only k steps away from A. That is, each row of G is a linear combination of
the rows of A.

We will verify that the rows of B are linear combinations of the rows of G.
Then the Linear Combination Lemma, Lemma 2.3, applies to show that the
rows of B are linear combinations of the rows of A.

If the row operation taking G to B is a swap then the rows of B are just the
rows of G reordered and each row of B is a linear combination of the rows of G.
If the operation taking G to B is multiplication of a row by a scalar cρi then
~βi = c~γi and the other rows are unchanged. Finally, if the row operation is
adding a multiple of one row to another rρi+ρj then only row j of B differs from
the matching row of G, and ~βj = rγi+γj, which is indeed a linear combinations
of the rows of G.

Because we have proved both a base step and an inductive step, the proposi-
tion follows by the principle of mathematical induction. QED

We now have the insight that Gauss’s Method builds linear combinations
of the rows. But of course its goal is to end in echelon form, since that is a
particularly basic version of a linear system, as it has isolated the variables. For
instance, in this matrix

R =


2 3 7 8 0 0

0 0 1 5 1 1

0 0 0 3 3 0

0 0 0 0 2 1


x1 has been removed from x5’s equation. That is, Gauss’s Method has made
x5’s row in some way independent of x1’s row.

The following result makes this intuition precise. What Gauss’s Method
eliminates is linear relationships among the rows.
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2.5 Lemma In an echelon form matrix, no nonzero row is a linear combination
of the other nonzero rows.

Proof Let R be an echelon form matrix and consider its non-~0 rows. First
observe that if we have a row written as a combination of the others ~ρi =

c1~ρ1+ · · ·+ci−1~ρi−1+ci+1~ρi+1+ · · ·+cm~ρm then we can rewrite that equation
as

~0 = c1~ρ1 + · · ·+ ci−1~ρi−1 + ci~ρi + ci+1~ρi+1 + · · ·+ cm~ρm (∗)

where not all the coefficients are zero; specifically, ci = −1. The converse holds
also: given equation (∗) where some ci 6= 0 we could express ~ρi as a combination
of the other rows by moving ci~ρi to the left and dividing by −ci. Therefore we
will have proved the theorem if we show that in (∗) all of the coefficients are 0.
For that we use induction on the row number i.

The base case is the first row i = 1 (if there is no such nonzero row, so that
R is the zero matrix, then the lemma holds vacuously). Let `i be the column
number of the leading entry in row i. Consider the entry of each row that is in
column `1. Equation (∗) gives this.

0 = c1r1,`1 + c2r2,`1 + · · ·+ cmrm,`1 (∗∗)

The matrix is in echelon form so every row after the first has a zero entry in that
column r2,`1 = · · · = rm,`1 = 0. Thus equation (∗∗) shows that c1 = 0, because
r1,`1 6= 0 as it leads the row.

The inductive step is much the same as the base step. Again consider
equation (∗). We will prove that if the coefficient ci is 0 for each row index
i ∈ {1, . . . , k } then ck+1 is also 0. We focus on the entries from column `k+1.

0 = c1r1,`k+1 + · · ·+ ck+1rk+1,`k+1 + · · ·+ cmrm,`k+1

By the inductive hypothesis c1, . . . ck are all 0 so this reduces to the equation
0 = ck+1rk+1,`k+1 + · · · + cmrm,`k+1 . The matrix is in echelon form so the
entries rk+2,`k+1 , . . . , rm,`k+1 are all 0. Thus ck+1 = 0, because rk+1,`k+1 6= 0
as it is the leading entry. QED

2.6 Theorem Each matrix is row equivalent to a unique reduced echelon form
matrix.

Proof [Yuster] Fix a number of rows m. We will proceed by induction on the
number of columns n.

The base case is that the matrix has n = 1 column. If this is the zero matrix
then its echelon form is the zero matrix. If instead it has any nonzero entries
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then when the matrix is brought to reduced echelon form it must have at least
one nonzero entry, which must be a 1 in the first row. Either way, its reduced
echelon form is unique.

For the inductive step we assume that n > 1 and that all m row matrices
having fewer than n columns have a unique reduced echelon form. Consider
an m×n matrix A and suppose that B and C are two reduced echelon form
matrices derived from A. We will show that these two must be equal.

Let Â be the matrix consisting of the first n − 1 columns of A. Observe
that any sequence of row operations that bring A to reduced echelon form will
also bring Â to reduced echelon form. By the inductive hypothesis this reduced
echelon form of Â is unique, so if B and C differ then the difference must occur
in column n.

We finish the inductive step, and the argument, by showing that the two
cannot differ only in that column. Consider a homogeneous system of equations
for which A is the matrix of coefficients.

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = 0

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = 0
...

am,1x1 + am,2x2 + · · ·+ am,nxn = 0

(∗)

By Theorem One.I.1.5 the set of solutions to that system is the same as the set
of solutions to B’s system

b1,1x1 + b1,2x2 + · · ·+ b1,nxn = 0

b2,1x1 + b2,2x2 + · · ·+ b2,nxn = 0
...

bm,1x1 + bm,2x2 + · · ·+ bm,nxn = 0

(∗∗)

and to C’s.
c1,1x1 + c1,2x2 + · · ·+ c1,nxn = 0

c2,1x1 + c2,2x2 + · · ·+ c2,nxn = 0
...

cm,1x1 + cm,2x2 + · · ·+ cm,nxn = 0

(∗∗∗)

With B and C different only in column n, suppose that they differ in row i.
Subtract row i of (∗∗∗) from row i of (∗∗) to get the equation (bi,n−ci,n)·xn = 0.
We’ve assumed that bi,n 6= ci,n so xn = 0. Thus in (∗∗) and (∗∗∗) the n-th
column contains a leading entry, or else the variable xn would be free. That’s a
contradiction because with B and C equal on the first n− 1 columns, the leading
entries in the n-th column would have to be in the same row, and with both
matrices in reduced echelon form, both leading entries would have to be 1, and
would have to be the only nonzero entries in that column. So B = C. QED
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That result answers the two questions from this section’s introduction: do
any two echelon form versions of a linear system have the same number of free
variables, and if so are they exactly the same variables? We get from any echelon
form version to the reduced echelon form by eliminating up, so any echelon form
version of a system has the same free variables as the reduced echelon form, and
therefore uniqueness of reduced echelon form gives that the same variables are
free in all echelon form version of a system. Thus both questions are answered
“yes.” There is no linear system and no combination of row operations such that,
say, we could solve the system one way and get y and z free but solve it another
way and get y and w free.

We close with a recap. In Gauss’s Method we start with a matrix and then
derive a sequence of other matrices. We defined two matrices to be related if we
can derive one from the other. That relation is an equivalence relation, called
row equivalence, and so partitions the set of all matrices into row equivalence
classes.

. . .

(
2

1

7

3
)

(
0

1

1

3
)

(There are infinitely many matrices in the pictured class, but we’ve only got
room to show two.) We have proved there is one and only one reduced echelon
form matrix in each row equivalence class. So the reduced echelon form is a
canonical form∗ for row equivalence: the reduced echelon form matrices are
representatives of the classes.

. . .

? ?

?

?(
0

1

1

0
)

The idea here is that one way to understand a mathematical situation is
by being able to classify the cases that can happen. This is a theme in this
book and we have seen this several times already. We classified solution sets of
linear systems into the no-elements, one-element, and infinitely-many elements

∗ More information on canonical representatives is in the appendix.



Section III. Reduced Echelon Form 61

cases. We also classified linear systems with the same number of equations as
unknowns into the nonsingular and singular cases.

Here, where we are investigating row equivalence, we know that the set of all
matrices breaks into the row equivalence classes and we now have a way to put
our finger on each of those classes—we can think of the matrices in a class as
derived by row operations from the unique reduced echelon form matrix in that
class.

Put in more operational terms, uniqueness of reduced echelon form lets us
answer questions about the classes by translating them into questions about
the representatives. For instance, as promised in this section’s opening, we now
can decide whether one matrix can be derived from another by row reduction.
We apply the Gauss-Jordan procedure to both and see if they yield the same
reduced echelon form.

2.7 Example These matrices are not row equivalent(
1 −3

−2 6

) (
1 −3

−2 5

)
because their reduced echelon forms are not equal.(

1 −3

0 0

) (
1 0

0 1

)
2.8 Example Any nonsingular 3×3 matrix Gauss-Jordan reduces to this.1 0 0

0 1 0

0 0 1


2.9 Example We can describe all the classes by listing all possible reduced echelon
form matrices. Any 2×2 matrix lies in one of these: the class of matrices row
equivalent to this, (

0 0

0 0

)
the infinitely many classes of matrices row equivalent to one of this type(

1 a

0 0

)

where a ∈ R (including a = 0), the class of matrices row equivalent to this,(
0 1

0 0

)
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and the class of matrices row equivalent to this(
1 0

0 1

)

(this is the class of nonsingular 2×2 matrices).

Exercises

X 2.10 Decide if the matrices are row equivalent.

(a)
(
1 2

4 8

)
,

(
0 1

1 2

)
(b)

1 0 2

3 −1 1

5 −1 5

 ,
1 0 2

0 2 10

2 0 4


(c)

2 1 −1

1 1 0

4 3 −1

 ,(1 0 2

0 2 10

)
(d)

(
1 1 1

−1 2 2

)
,

(
0 3 −1

2 2 5

)

(e)
(
1 1 1

0 0 3

)
,

(
0 1 2

1 −1 1

)
2.11 Describe the matrices in each of the classes represented in Example 2.9.

2.12 Describe all matrices in the row equivalence class of these.

(a)
(
1 0

0 0

)
(b)

(
1 2

2 4

)
(c)

(
1 1

1 3

)
2.13 How many row equivalence classes are there?

2.14 Can row equivalence classes contain different-sized matrices?

2.15 How big are the row equivalence classes?
(a) Show that for any matrix of all zeros, the class is finite.
(b) Do any other classes contain only finitely many members?

X 2.16 Give two reduced echelon form matrices that have their leading entries in the
same columns, but that are not row equivalent.

X 2.17 Show that any two n×n nonsingular matrices are row equivalent. Are any two
singular matrices row equivalent?

X 2.18 Describe all of the row equivalence classes containing these.
(a) 2×2 matrices (b) 2×3 matrices (c) 3×2 matrices
(d) 3×3 matrices

2.19 (a) Show that a vector ~β0 is a linear combination of members of the set
{~β1, . . . , ~βn } if and only if there is a linear relationship ~0 = c0~β0 + · · · + cn~βn
where c0 is not zero. (Hint. Watch out for the ~β0 = ~0 case.)
(b) Use that to simplify the proof of Lemma 2.5.

X 2.20 [Trono] Three truck drivers went into a roadside cafe. One truck driver pur-
chased four sandwiches, a cup of coffee, and ten doughnuts for $8.45. Another
driver purchased three sandwiches, a cup of coffee, and seven doughnuts for $6.30.
What did the third truck driver pay for a sandwich, a cup of coffee, and a doughnut?
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X 2.21 The Linear Combination Lemma says which equations can be gotten from
Gaussian reduction of a given linear system.

(1) Produce an equation not implied by this system.

3x + 4y = 8

2x + y = 3

(2) Can any equation be derived from an inconsistent system?

2.22 [Hoffman & Kunze] Extend the definition of row equivalence to linear systems.
Under your definition, do equivalent systems have the same solution set?

X 2.23 In this matrix 1 2 3

3 0 3

1 4 5


the first and second columns add to the third.
(a) Show that remains true under any row operation.
(b) Make a conjecture.
(c) Prove that it holds.
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Computer Algebra Systems

The linear systems in this chapter are small enough that their solution by hand
is easy. For large systems, including those involving thousands of equations,
we need a computer. There are special purpose programs such as LINPACK
for this. Also popular are general purpose computer algebra systems including
Maple, Mathematica, or MATLAB, and Sage .

For example, in the Topic on Networks, we need to solve this.

i0 − i1 − i2 = 0

i1 − i3 − i5 = 0

i2 − i4 + i5 = 0

i3 + i4 − i6 = 0

5i1 + 10i3 = 10

2i2 + 4i4 = 10

5i1 − 2i2 + 50i5 = 0

Doing this by hand would take time and be error-prone. A computer is better.
Here is that system solved with Sage. (There are many ways to do this; the

one here has the advantage of simplicity.)
sage: var('i0,i1,i2,i3,i4,i5,i6')
(i0, i1, i2, i3, i4, i5, i6)
sage: network_system=[i0-i1-i2==0, i1-i3-i5==0,
....: i2-i4+i5==0,, i3+i4-i6==0, 5*i1+10*i3==10,
....: 2*i2+4*i4==10, 5*i1-2*i2+50*i5==0]
sage: solve(network_system, i0,i1,i2,i3,i4,i5,i6)
[[i0 == (7/3), i1 == (2/3), i2 == (5/3), i3 == (2/3),

i4 == (5/3), i5 == 0, i6 == (7/3)]]

Magic.
Here is the same system solved under Maple. We enter the array of coefficients

and the vector of constants, and then we get the solution.
> A:=array( [[1,-1,-1,0,0,0,0],

[0,1,0,-1,0,-1,0],
[0,0,1,0,-1,1,0],
[0,0,0,1,1,0,-1],
[0,5,0,10,0,0,0],
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[0,0,2,0,4,0,0],
[0,5,-2,0,0,50,0]] );

> u:=array( [0,0,0,0,10,10,0] );
> linsolve(A,u);

7 2 5 2 5 7
[ -, -, -, -, -, 0, - ]

3 3 3 3 3 3

If a system has infinitely many solutions then the program will return a
parametrization.

Exercises

1 Use the computer to solve the two problems that opened this chapter.
(a) This is the Statics problem.

40h+ 15c = 100

25c = 50+ 50h

(b) This is the Chemistry problem.

7h = 7j

8h+ 1i = 5j+ 2k

1i = 3j

3i = 6j+ 1k

2 Use the computer to solve these systems from the first subsection, or conclude
‘many solutions’ or ‘no solutions’.

(a) 2x + 2y = 5

x − 4y = 0

(b) −x + y = 1

x + y = 2

(c) x − 3y + z = 1

x + y + 2z = 14

(d) −x − y = 1

−3x − 3y = 2

(e) 4y + z = 20

2x − 2y + z = 0

x + z = 5

x + y − z = 10

(f) 2x + z +w = 5

y −w = −1

3x − z −w = 0

4x + y + 2z +w = 9

3 Use the computer to solve these systems from the second subsection.
(a) 3x + 6y = 18

x + 2y = 6

(b) x + y = 1

x − y = −1

(c) x1 + x3 = 4

x1 − x2 + 2x3 = 5

4x1 − x2 + 5x3 = 17

(d) 2a + b − c = 2

2a + c = 3

a − b = 0

(e) x + 2y − z = 3

2x + y +w = 4

x − y + z +w = 1

(f) x + z +w = 4

2x + y −w = 2

3x + y + z = 7

4 What does the computer give for the solution of the general 2×2 system?

ax + cy = p

bx + dy = q
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Accuracy of Computations

Gauss’s Method lends itself to computerization. The code below illustrates. It
operates on an n×n matrix named a, doing row combinations using the first
row, then the second row, etc.
for(row=1; row<=n-1; row++){
for(row_below=row+1; row_below<=n; row_below++){

multiplier=a[row_below,row]/a[row,row];
for(col=row; col<=n; col++){

a[row_below,col]-=multiplier*a[row,col];
}

}
}

This is in the C language. The for(row=1; row<=n-1; row++){ .. } loop initial-
izes row at 1 and then iterates while row is less than or equal to n − 1, each
time through incrementing row by one with the ++ operation. The other non-
obvious language construct is that the -= in the innermost loop has the effect of
a[row_below,col]=-1*multiplier*a[row,col]+a[row_below,col].

While that code is a first take on mechanizing Gauss’s Method, it is naive.
For one thing, it assumes that the entry in the row,row position is nonzero. So
one way that it needs to be extended is to cover the case where finding a zero
in that location leads to a row swap or to the conclusion that the matrix is
singular.

We could add some if statements to cover those cases but we will instead
consider another way in which this code is naive. It is prone to pitfalls arising
from the computer’s reliance on floating point arithmetic.

For example, above we have seen that we must handle a singular system as a
separate case. But systems that are nearly singular also require care. Consider
this one (the extra digits are in the ninth significant place).

x+ 2y= 3

1.000 000 01x+ 2y= 3.000 000 01
(∗)

By eye we easily spot the solution x = 1, y = 1. A computer has more trouble. If
it represents real numbers to eight significant places, called single precision , then



Topic: Accuracy of Computations 67

it will represent the second equation internally as 1.000 000 0x+2y = 3.000 000 0,
losing the digits in the ninth place. Instead of reporting the correct solution,
this computer will think that the two equations are equal and it will report that
the system is singular.

For some intuition about how the computer could come up with something
that far off, consider this graph of the system.

(1, 1)

At the scale of this drawing we cannot tell the two lines apart. This system is
nearly singular in the sense that the two lines are nearly the same line.

Near-singularity gives the system (∗) the property that a small change in
the system can cause a large change in its solution. For instance, changing the
3.000 000 01 to 3.000 000 03 changes the intersection point from (1, 1) to (3, 0).
The solution changes radically depending on the ninth digit, which explains
why an eight-place computer has trouble. A problem that is very sensitive to
inaccuracy or uncertainties in the input values is ill-conditioned.

The above example gives one way in which a system can be difficult to
solve on a computer. It has the advantage that the picture of nearly-equal lines
gives a memorable insight into one way for numerical difficulties to happen.
Unfortunately this insight isn’t useful when we wish to solve some large system.
We typically will not understand the geometry of an arbitrary large system.

There are other ways that a computer’s results may be unreliable, besides
that the angle between some of the linear surfaces is small. For example, consider
this system (from [Hamming]).

0.001x+ y= 1

x− y= 0
(∗∗)

The second equation gives x = y, so x = y = 1/1.001 and thus both variables
have values that are just less than 1. A computer using two digits represents
the system internally in this way (we will do this example in two-digit floating
point arithmetic for clarity but inventing a similar one with eight or more digits
is easy).

(1.0× 10−3) · x+ (1.0× 100) · y= 1.0× 100

(1.0× 100) · x− (1.0× 100) · y= 0.0× 100
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The row reduction step −1000ρ1 + ρ2 produces a second equation −1001y =

−1000, which this computer rounds to two places as (−1.0×103)y = −1.0×103.
The computer decides from the second equation that y = 1 and with that it
concludes from the first equation that x = 0. The y value is close but the x is
bad—the ratio of the actual answer to the computer’s answer is infinite. In
short, another cause of unreliable output is the computer’s reliance on floating
point arithmetic when the system-solving code leads to using leading entries
that are small.

An experienced programmer may respond by using double precision, which
retains sixteen significant digits, or perhaps using some even larger size. This
will indeed solve many problems. However, double precision has greater memory
requirements and besides we can obviously tweak the above to give the same
trouble in the seventeenth digit, so double precision isn’t a panacea. We need a
strategy to minimize numerical trouble as well as some guidance about how far
we can trust the reported solutions.

A basic improvement on the naive code above is to not determine the factor
to use for row combinations by simply taking the entry in the row,row position,
but rather to look at all of the entries in the row column below the row,row entry
and take one that is likely to give reliable results because it is not too small.
This is partial pivoting.

For example, to solve the troublesome system (∗∗) above we start by looking
at both equations for a best entry to use, and take the 1 in the second equation
as more likely to give good results. The combination step of −.001ρ2 + ρ1
gives a first equation of 1.001y = 1, which the computer will represent as
(1.0× 100)y = 1.0× 100, leading to the conclusion that y = 1 and, after back-
substitution, that x = 1, both of which are close to right. We can adapt the
code from above to do this.

for(row=1; row<=n-1; row++){
/* find the largest entry in this column (in row max) */
max=row;
for(row_below=row+1; row_below<=n; row_below++){

if (abs(a[row_below,row]) > abs(a[max,row]));
max = row_below;

}
/* swap rows to move that best entry up */
for(col=row; col<=n; col++){

temp=a[row,col];
a[row,col]=a[max,col];
a[max,col]=temp;

}
/* proceed as before */
for(row_below=row+1; row_below<=n; row_below++){

multiplier=a[row_below,row]/a[row,row];
for(col=row; col<=n; col++){
a[row_below,col]-=multiplier*a[row,col];

}
}

}
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A full analysis of the best way to implement Gauss’s Method is beyond the
scope of this book (see [Wilkinson 1965]), but the method recommended by
most experts first finds the best entry among the candidates and then scales it
to a number that is less likely to give trouble. This is scaled partial pivoting.

In addition to returning a result that is likely to be reliable, most well-done
code will return a conditioning number that describes the factor by which
uncertainties in the input numbers could be magnified to become inaccuracies
in the results returned (see [Rice]).

The lesson is that just because Gauss’s Method always works in theory, and
just because computer code correctly implements that method, doesn’t mean
that the answer is reliable. In practice, always use a package where experts have
worked hard to counter what can go wrong.

Exercises
1 Using two decimal places, add 253 and 2/3.
2 This intersect-the-lines problem contrasts with the example discussed above.

(1, 1)

x + 2y = 3

3x − 2y = 1

Illustrate that in this system some small change in the numbers will produce only
a small change in the solution by changing the constant in the bottom equation to
1.008 and solving. Compare it to the solution of the unchanged system.

3 Solve this system by hand ([Rice]).
0.000 3x + 1.556y = 1.569

0.345 4x − 2.346y = 1.018

(a) Solve it accurately, by hand. (b) Solve it by rounding at each step to
four significant digits.

4 Rounding inside the computer often has an effect on the result. Assume that your
machine has eight significant digits.
(a) Show that the machine will compute (2/3) + ((2/3) − (1/3)) as unequal to
((2/3) + (2/3)) − (1/3). Thus, computer arithmetic is not associative.
(b) Compare the computer’s version of (1/3)x + y = 0 and (2/3)x + 2y = 0. Is
twice the first equation the same as the second?

5 Ill-conditioning is not only dependent on the matrix of coefficients. This example
[Hamming] shows that it can arise from an interaction between the left and right
sides of the system. Let ε be a small real.

3x + 2y + z = 6

2x + 2εy + 2εz = 2+ 4ε

x + 2εy − εz = 1+ ε
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(a) Solve the system by hand. Notice that the ε’s divide out only because there is
an exact cancellation of the integer parts on the right side as well as on the left.
(b) Solve the system by hand, rounding to two decimal places, and with ε = 0.001.
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Analyzing Networks

The diagram below shows some of a car’s electrical network. The battery is on
the left, drawn as stacked line segments. The wires are lines, shown straight and
with sharp right angles for neatness. Each light is a circle enclosing a loop.

12V

Dome
Light

Door
Actuated
Switch

Brake
Lights

L R

Brake
Actuated
Switch

Light
Switch

Off

Dimmer
HiLo

L RL R

Headlights

L R

Rear
Lights

L R

Parking
Lights

The designer of such a network needs to answer questions such as: how much
electricity flows when both the hi-beam headlights and the brake lights are on?
We will use linear systems to analyze simple electrical networks.

For the analysis we need two facts about electricity and two facts about
electrical networks.

The first fact is that a battery is like a pump, providing a force impelling
the electricity to flow, if there is a path. We say that the battery provides a
potential. For instance, when the driver steps on the brake then the switch
makes contact and so makes a circuit on the left side of the diagram, which
includes the brake lights. Once the circuit exists, the battery’s force creates a
current flowing through that circuit, lighting the lights.

The second electrical fact is that in some kinds of network components the
amount of flow is proportional to the force provided by the battery. That is, for
each such component there is a number, it’s resistance, such that the potential
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is equal to the flow times the resistance. Potential is measured in volts, the
rate of flow is in amperes, and resistance to the flow is in ohms ; these units are
defined so that volts = amperes · ohms.

Components with this property, that the voltage-amperage response curve is a
line through the origin, are resistors. For example, if a resistor measures 2 ohms
then wiring it to a 12 volt battery results in a flow of 6 amperes. Conversely, if
electrical current of 2 amperes flows through that resistor then there must be
a 4 volt potential difference between it’s ends. This is the voltage drop across
the resistor. One way to think of the electrical circuits that we consider here is
that the battery provides a voltage rise while the other components are voltage
drops.

The facts that we need about networks are Kirchoff’s Current Law, that for
any point in a network the flow in equals the flow out and Kirchoff’s Voltage
Law, that around any circuit the total drop equals the total rise.

We start with the network below. It has a battery that provides the potential
to flow and three resistors, shown as zig-zags. When components are wired one
after another, as here, they are in series.

20 volt
potential

2 ohm
resistance

5 ohm
resistance

3 ohm
resistance

By Kirchoff’s Voltage Law, because the voltage rise is 20 volts, the total voltage
drop must also be 20 volts. Since the resistance from start to finish is 10 ohms
(the resistance of the wire connecting the components is negligible), the current
is (20/10) = 2 amperes. Now, by Kirchhoff’s Current Law, there are 2 amperes
through each resistor. Therefore the voltage drops are: 4 volts across the 2 ohm
resistor, 10 volts across the 5 ohm resistor, and 6 volts across the 3 ohm resistor.

The prior network is simple enough that we didn’t use a linear system but
the next one is more complicated. Here the resistors are in parallel.

20 volt 12 ohm 8 ohm

We begin by labeling the branches as below. Let the current through the left
branch of the parallel portion be i1 and that through the right branch be i2,
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and also let the current through the battery be i0. Note that we don’t need to
know the actual direction of flow— if current flows in the direction opposite to
our arrow then we will get a negative number in the solution.

↑ i0 i1 ↓ ↓ i2

The Current Law, applied to the split point in the upper right, gives that
i0 = i1 + i2. Applied to the split point lower right it gives i1 + i2 = i0. In
the circuit that loops out of the top of the battery, down the left branch of the
parallel portion, and back into the bottom of the battery, the voltage rise is
20 while the voltage drop is i1 · 12, so the Voltage Law gives that 12i1 = 20.
Similarly, the circuit from the battery to the right branch and back to the
battery gives that 8i2 = 20. And, in the circuit that simply loops around in the
left and right branches of the parallel portion (we arbitrarily take the direction
of clockwise), there is a voltage rise of 0 and a voltage drop of 8i2 − 12i1 so
8i2 − 12i1 = 0.

i0 − i1 − i2 = 0

−i0 + i1 + i2 = 0

12i1 = 20

8i2 = 20

−12i1 + 8i2 = 0

The solution is i0 = 25/6, i1 = 5/3, and i2 = 5/2, all in amperes. (Incidentally,
this illustrates that redundant equations can arise in practice.)

Kirchhoff’s laws can establish the electrical properties of very complex net-
works. The next diagram shows five resistors, whose values are in ohms, wired
in series-parallel.

10 volt

5 2

50

10 4

This is a Wheatstone bridge (see Exercise 3). To analyze it, we can place the
arrows in this way.
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↑ i0

i1 ↙ ↘ i2

i5 →

i3 ↘ ↙ i4

Kirchhoff’s Current Law, applied to the top node, the left node, the right node,
and the bottom node gives these.

i0 = i1 + i2

i1 = i3 + i5

i2 + i5 = i4

i3 + i4 = i0

Kirchhoff’s Voltage Law, applied to the inside loop (the i0 to i1 to i3 to i0 loop),
the outside loop, and the upper loop not involving the battery, gives these.

5i1 + 10i3 = 10

2i2 + 4i4 = 10

5i1 + 50i5 − 2i2 = 0

Those suffice to determine the solution i0 = 7/3, i1 = 2/3, i2 = 5/3, i3 = 2/3,
i4 = 5/3, and i5 = 0.

We can understand many kinds of networks in this way. For instance, the
exercises analyze some networks of streets.

Exercises
1 Calculate the amperages in each part of each network.

(a) This is a simple network.

9 volt

3 ohm

2 ohm

2 ohm

(b) Compare this one with the parallel case discussed above.

9 volt

3 ohm

2 ohm 2 ohm

2 ohm
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(c) This is a reasonably complicated network.

9 volt

3 ohm

3 ohm 2 ohm

2 ohm

3 ohm

4 ohm

2 ohm

2 In the first network that we analyzed, with the three resistors in series, we just
added to get that they acted together like a single resistor of 10 ohms. We can do
a similar thing for parallel circuits. In the second circuit analyzed,

20 volt 12 ohm 8 ohm

the electric current through the battery is 25/6 amperes. Thus, the parallel portion
is equivalent to a single resistor of 20/(25/6) = 4.8 ohms.
(a) What is the equivalent resistance if we change the 12 ohm resistor to 5 ohms?
(b) What is the equivalent resistance if the two are each 8 ohms?
(c) Find the formula for the equivalent resistance if the two resistors in parallel
are r1 ohms and r2 ohms.

3 A Wheatstone bridge is used to measure resistance.

r1 r3

rg

r2 r4

Show that in this circuit if the current flowing through rg is zero then r4 = r2r3/r1.
(To operate the device, put the unknown resistance at r4. At rg is a meter that
shows the current. We vary the three resistances r1, r2, and r3—typically they
each have a calibrated knob—until the current in the middle reads 0. Then the
equation gives the value of r4.)

4 Consider this traffic circle.

Main Street

North Avenue

Pier Boulevard
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This is the traffic volume, in units of cars per five minutes.
North Pier Main

into
out of

100

75

150

150

25

50
We can set up equations to model how the traffic flows.
(a) Adapt Kirchhoff’s Current Law to this circumstance. Is it a reasonable
modeling assumption?
(b) Label the three between-road arcs in the circle with a variable. Using the
(adapted) Current Law, for each of the three in-out intersections state an equation
describing the traffic flow at that node.
(c) Solve that system.
(d) Interpret your solution.
(e) Restate the Voltage Law for this circumstance. How reasonable is it?

5 This is a network of streets.
Shelburne St

Willow

Winooski Ave

west
east

Jay Ln

We can observe the hourly flow of cars into this network’s entrances, and out of its
exits.

east Winooski west Winooski Willow Jay Shelburne
into

out of
80

30

50

5

65

70

–
55

40

75

(Note that to reach Jay a car must enter the network via some other road first,
which is why there is no ‘into Jay’ entry in the table. Note also that over a long
period of time, the total in must approximately equal the total out, which is why
both rows add to 235 cars.) Once inside the network, the traffic may flow in different
ways, perhaps filling Willow and leaving Jay mostly empty, or perhaps flowing in
some other way. Kirchhoff’s Laws give the limits on that freedom.
(a) Determine the restrictions on the flow inside this network of streets by setting
up a variable for each block, establishing the equations, and solving them. Notice
that some streets are one-way only. (Hint: this will not yield a unique solution,
since traffic can flow through this network in various ways; you should get at
least one free variable.)
(b) Suppose that someone proposes construction for Winooski Avenue East be-
tween Willow and Jay, and traffic on that block will be reduced. What is the least
amount of traffic flow that can we can allow on that block without disrupting
the hourly flow into and out of the network?


